
2024 Timothy and Kentucky Bluegrass Report

G.L. Olson, S.R. Smith, T.D. Phillips, C.D. Teutsch, and J.C. Henning, Plant and Soil Sciences

Introduction

Timothy (*Phleum pratense*) is the fourth most widely sown cool-season perennial grass used in Kentucky for forage—after tall fescue, orchardgrass, and Kentucky bluegrass. It is a late-maturing bunchgrass that is primarily harvested as hay, particularly for horses. It also can be used for grazing or wildlife habitat.

Management is similar to that for other cool-season grasses. Harvesting at the mid- to late boot stage is needed to assure good yields and high forage quality. The quality of timothy declines more rapidly after heading than other cool-season grasses. In Kentucky, timothy behaves like a short-lived perennial, with stands usually lasting two to three years.

Kentucky bluegrass (*Poa pratensis*) is a high-quality, highly palatable, long-lived pasture plant with limited use for hay. It tolerates close, frequent grazing better than most grasses. It has low yields and low summer production and becomes dormant and brown during hot, dry summers. Kentucky bluegrass is slow to establish.

This report provides maturity and yield data on timothy and Kentucky bluegrass varieties included in yield trials in Kentucky. Tables 11 and 12 show summaries of all timothy and Kentucky bluegrass varieties tested in Kentucky for the last 15 years. The UK Forage Extension website (https://forages.ca.uky.edu) contains forage variety testing reports from Kentucky and surrounding states and a large number of other forage publications.

Considerations in Selection

Local adaptation and seasonal yield. Choose a variety that is adapted to Kentucky, as indicated by good performance across locations in replicated yield trials, such as those presented in this publication. Also, look for varieties that are productive in the desired season of use, whether for hay or grazing. Later-maturing varieties are desirable when timothy is grown in pure stands for hay; early maturing varieties provide a better fit when timothy is grown in mixtures with legumes.

Seed quality. Buy premium-quality seed that is high in germination and purity and free from weed seed. Buy certified seed or proprietary varieties of seed of an improved variety. An improved variety is one that has performed well in independent trials such as those reported in this publication.

Description of the Test

Data from six studies are reported. Timothy varieties and Kentucky bluegrass varieties were sown at Lexington in 2021, 2022,

Table 1. Temperature and rainfall at Lexington, Kentucky in 2022, 2023, and 2024.

		20	22			20	23			20	24 ²	
	Tempe	erature	Ra	infall	Tempe	rature	Ra	infall	Tempe	rature	Ra	infall
	°F	DEP ¹	IN	DEP	°F	DEP	IN	DEP	°F	DEP	IN	DEP
JAN	29	-2	4.93	+2.07	44	+13	6.28	+3.42	32	+1	5.50	+2.60
FEB	38	+3	7.69	+4.48	47	+12	3.73	+0.52	44	+9	3.90	+0.70
MAR	49	+5	4.27	-0.13	48	+4	4.45	+0.05	49	+5	3.50	-0.90
APR	55	0	3.71	-0.17	58	+3	2.36	-1.52	58	+3	3.90	0
MAY	69	+5	3.84	-0.63	65	+1	2.53	-1.94	67	+3	4.60	+0.10
JUN	76	+4	2.10	-1.56	72	0	6.75	+3.09	74	+2	2.40	-1.30
JUL	80	+4	6.46	+1.46	78	+2	5.32	+0.32	77	+1	2.50	-2.50
AUG	77	+2	4.27	+0.34	76	+1	2.40	-1.53	75	0	3.30	-0.60
SEP	70	+2	1.50	-1.70	71	+3	0.99	-2.21	70	+2	6.20	+3.00
OCT	57	0	0.96	-1.61	61	+4	2.30	-0.27	58	+1	0.30	-2.30
NOV	49	+4	2.10	-1.29	49	+4	1.70	-1.69				
DEC	40	+4	3.46	-0.52	44	+8	2.41	-1.57				
Total			45.29	+0.74			41.22	-3.33			36.10	-1.10
iotai			TJ.ZJ	10.74			71.22	رد.د			50.10	1.10

DEP is departure from the long-term average.
 2024 data is for ten months through October.

and 2023 as part of the forage variety testing program. The soil at Lexington (Maury) is a well-drained silt loam and is well-suited for timothy and bluegrass production. Seedings were made at the rate of 8 pounds per acre for timothy and 15 pounds per acre for Kentucky bluegrass into a prepared seedbed with a disk drill. Plots were 5 feet by 20 feet in a randomized complete block design with four replications with a harvested plot area of 5 feet by 15 feet. Nitrogen was applied at 60 pounds per acre of actual nitrogen in March, May, and August, for a total of 180 pounds/ acre/year. The test was harvested using a sickle-type forage plot harvester leaving a 3-inch stubble to simulate a hay management system. The first cutting was harvested when spring growth of most varieties had reached the mid- to late boot stage. Subsequent harvests were taken when forage growth was adequate for harvest. Fresh weight samples were taken at each harvest to calculate dry matter production. Establishment, fertility (P, K, and lime based on regular soil tests), weed control, and harvest were managed according to University of Kentucky Cooperative Extension Service recommendations.

Results and Discussion

Weather data for Lexington are presented in Table 1. Maturity ratings (see Table 2 for maturity scale) and dry matter yields are reported in tables 3 through 8. Yields are given by harvest date for 2024 and as total annual production. Stated yields are adjusted for percent weeds; therefore, value listed is for crop only. Varieties are listed by descending total production. Experimental varieties, listed separately at the bottom of the tables, are not available commercially.

Statistical analyses were performed on all data to determine if the apparent differences are truly due to varietal differences. Varieties not significantly different from the top variety in the total yield column are marked with one asterisk (*). To determine if two varieties are significantly different, compare the difference between them to the least significant difference (LSD) at the bottom of that column. If the difference is equal to or greater than the LSD, the varieties are significantly different when grown under those conditions. The coefficient of variation (CV) is a measure of the variability of the data and is included for each column of means. Low variability is desirable, and increased variability within a study results in higher CVs and larger LSDs.

Tables 9 and 10 show information about proprietors/distributors for Kentucky bluegrass and timothy varieties included in tests in this report. Varieties are listed in alphabetical order, with the experimental varieties at the bottom. Remember that experimental varieties are not available for farm use.

How to Interpret the Summary Tables

Tables 11 and 12 are summaries of yield data of commercial varieties for Kentucky bluegrass (1996-2024) and timothy (2000-2024) that have been entered in the Kentucky trials. The data are listed as a percentage of the mean of the commercial varieties entered in each specific trial. In other words, the mean for each trial is 100 percent—varieties with percentages over 100 yielded higher than average, and varieties with percentages less than 100 yielded lower than average. Direct statistical comparisons of varieties cannot be made using the summary tables 11 and 12, but these comparisons do help to identify varieties for further consideration. Varieties that have performed better than average over many years and at several locations have stable performance; others may have performed well in wet years or on particular soil types. These details may influence variety choice, and the information can be found in the yearly reports. See footnotes in tables 11 and 12 to determine to which yearly report should be referenced.

Summary

Selecting a good timothy or Kentucky bluegrass variety is an important first step in establishing a productive stand of grass. Proper management, beginning with seedbed preparation and continuing throughout the life of the stand, is necessary for even the highest yielding variety to produce to its genetic potential.

The following is a list of University of Kentucky Cooperative Extension publications related to timothy and Kentucky bluegrass management. They are available from your county Extension office and are listed in the "Publications" section of the UK Forage website, https://forages.ca.uky.edu.

- Lime and Fertilizer Recommendations (AGR-1)
- Grain, Forage, and Cover Crop Guide for Kentucky (AGR-18)
- Establishing Forage Crops (AGR-64)
- Timothy (AGR-84)
- Kentucky Bluegrass as a Forage Crop (AGR-134)
- Forage Identification and Use Guide (AGR-175)
- Establishing Horse Pastures (ID-147)

About the Authors

G.L. Olson is a research specialist, S.R. Smith and J.C. Henning are Extension professors and forage specialists, C.D. Teutsch is an Extension associate professor and forage specialist, and T.D. Phillips is an associate professor in tall fescue and grass breeding.

Table 2. Descriptive scheme for the stages of development in perennial forage grasses.

forage	grasses.	
Code	Description	Remarks
	Leaf development	
11	First leaf unfolded	Applicable to regrowth of established (plants) and to primary growth of seedlings.
12	2 leaves unfolded	Further subdivision by means of leaf
13	3 leaves unfolded	development index (see text).
•		
19	9 or more leaves unfolded	
	Sheath elongation	
20	No elongated sheath	Denotes first phase of new spring
21	1 elongated sheath	growth after overwintering. This character is used instead of tillering
22	2 elongated sheaths	which is difficult to record in
23	3 elongated sheaths	established stands.
29	9 or more elongated sheaths	
	Tillering (alternative to sheath el	longation)
21	Main shoot only	Applicable to primary growth
22	Main shoot and 1 tiller	of seedlings or to single tiller
23	Main shoot and 2 tillers	transplants.
24	Main shoot and 3 tillers	
29	Main shoot and 9 or more tillers	
	Stem elongation	
31	First node palpable	More precisely an accumulation
32	Second node palpable	of nodes. Fertile and sterile tillers
33	Third node palpable	distinguishable.
34	Fourth node palpable	
35	Fifth node palpable	
37	Flag leaf just visible	
39	Flag leaf liqule/collar just visible	
	Booting	
45	Boot swollen	
	Inflorescence emergence	
50	Upper 1 to 2 cm of inflorescence visible	
52	1/4 of inflorescence emerged	
54	1/2 of inflorescence emerged	
56	3/4 of inflorescence emerged	
58	Base of inflorescence just visible	
	Anthesis	
60	Preanthesis	Inflorescence-bearing internode is visible. No anthers are visible.
62	Beginning of anthesis	First anthers appear.
64	Maximum anthesis	Maximum pollen shedding.
66	End of anthesis	No more pollen shedding.
	Seed ripening	
75	Endosperm milky	Inflorescence green.
85	Endosperm soft doughy	No seeds loosening when inflorescence is hit on palm.
87	Endosperm hard doughy	Inflorescence losing chlorophyll; a few seeds loosening when inflorescence hit on palm
91	Endosperm hard	Inflorescence-bearing internode losing chlorophyll; seeds loosening in quantity when inflorescence hit on palm.
93	Endosperm hard and dry	Final stage of seed development; most seeds shed.

Smith, J. Allan, and Virgil W. Hayes. 1981. p. 416-418. 14th International Grasslands Conference Proc. 1981. June 14-24, 1981, Lexington, Kentucky.

Table 3. Dry matter yields, seedling vigor, maturity, plant height, and stand persistence of timothy varieties sown September 10, 2021, at Lexington, Kentucky.

	Seedling	ı	Maturity •	2	Plant			Per	cent Sta	and					Yiel	d (tons/	acre)		
Variety	Vigor ¹	2022	2023	2024	Height (in)	2021	20	22	20	23	20	24	2022	2023		20	24		3 2000
variety	Oct 4, 2021	May 17	May 17	May 13	May 13, 2024	Oct 4	Mar 22	Oct 19	Mar 20	Oct 17	Mar 20	Oct 18	Total	Total	May 13	Jun- Aug ³	Oct 21	Total	3-year Total
Commercial	Varieties-Av	ailable f	or Farm	Use															
Clair	4.4	55.5	54.5	55.0	27	99	98	98	98	98	98	97	5.09	3.35	1.66	_	0.21	1.87	10.31*
Zenyatta	3.8	56.5	57.0	56.0	26	98	98	98	98	98	98	97	4.96	3.42	1.57	_	0.32	1.89	10.26*
Conquest	3.8	57.5	58.0	56.0	29	100	100	100	100	99	99	97	4.77	3.25	1.63	-	0.32	1.96	9.97*
Carson	3.3	56.0	54.0	53.0	21	97	96	98	98	97	97	97	4.78	3.30	1.40	_	0.27	1.68	9.75*
Valor	3.4	56.0	54.5	55.0	22	100	99	99	99	98	98	97	4.71	3.17	1.33	_	0.23	1.57	9.44*
KY Early	2.1	58.0	57.5	56.5	32	69	87	92	95	95	95	91	4.52	3.09	1.44	-	0.18	1.62	9.23*
Express II	3.5	47.5	46.3	45.0	17	94	97	97	96	95	95	86	3.94	3.03	1.15	_	0.13	1.28	8.25
Climax	4.1	45.0	45.0	45.0	12	99	99	99	99	98	98	93	3.70	2.70	0.99	_	0.19	1.18	7.58
Experiment	al Varieties																		
NC Graze	3.9	46.8	45.0	52.0	23	100	100	100	100	100	100	92	4.96	3.32	1.40	_	0.19	1.59	9.87*
NC Nelson	4.6	52.0	50.8	53.0	22	100	100	100	100	100	100	95	4.83	3.42	1.36	_	0.18	1.55	9.80*
Mean	3.8	53.1	52.3	52.7	23	95	97	98	98	98	98	94	4.62	3.21	1.39		0.22	1.62	9.45
CV,%	14.8	3.3	3.9	2.2	12	8	3	3	2	2	2	5	6.97	11.69	14.63		44.15	13.91	7.98
LSD,0.05	0.8	2.5	2.9	1.6	4	12	4	5	2	3	2	7	0.47	0.54	0.30		0.14	0.33	1.09

Table 4. Dry matter yields, seedling yigor, maturity, plant height, and stand persistence of timothy varieties sown September 9, 2022, at Lexington, Kentucky,

	Seedling	ı	Maturity	2	Plant		Pe	rcent Sta	nd				Yield (to	ns/acre)		
Variety	Vigor ¹	20	23	2024	Height (in)	2022	20	23	20	24	2023		20	24		3
variety	Oct 25, 2022	May 17	Jun 28	May 13	May 13, 2024	Oct 25	Mar 20	Oct 17	Mar 20	Oct 18	Total	May 13	Jun- Aug³	Oct 22	Total	2-year Total
Commercial	Varieties-Av	ailable 1	or Farm	Use												
Sahara DT	3.5	55.0	53.5	53.5	29	98	97	97	97	98	4.36	2.36	_	0.25	2.61	6.97*
Zenyatta	4.0	58.0	55.0	56.0	32	99	99	99	98	99	4.33	2.26	_	0.17	2.43	6.76*
KY Early	3.5	58.0	55.5	56.5	35	95	94	94	96	97	3.90	2.54	_	0.18	2.73	6.62*
Carson	3.4	56.0	55.5	54.0	24	99	97	97	96	96	3.80	2.28	_	0.24	2.52	6.32*
Clair	3.0	55.5	54.5	54.5	27	97	93	95	97	98	3.71	2.00	_	0.10	2.10	5.81*
Valor	2.5	56.0	52.0	56.0	26	94	94	94	96	96	3.75	1.87	_	0.12	1.99	5.74*
Express II	2.3	46.3	46.3	47.5	22	85	93	93	96	96	3.22	2.21	_	0.16	2.37	5.59
Barfleo	3.1	48.5	29.0	46.3	19	99	95	97	96	98	3.40	1.52	_	0.18	1.69	5.10
Barpenta	2.5	46.3	54.0	46.3	13	96	93	94	95	97	2.76	1.49	_	0.17	1.65	4.42
Climax	3.4	45.0	57.0	45.0	14	98	92	95	96	96	2.61	1.33	_	0.12	1.45	4.06
Mean	3.1	52.5	51.2	51.6	24	96	94	95	96	97	3.58	1.98		0.17	2.15	5.74
CV,%	21.9	3.7	8.6	3.7	14	6	4	3	2	2	11.50	25.77		52.69	25.86	15.57
LSD,0.05	1.0	2.8	6.4	2.7	5	8	6	4	2	2	0.60	0.74		0.13	0.81	1.30

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.
2 Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

There was no mid-summer harvest because of minimal regrowth after the first harvest.
 Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

There was no mid-summer harvest because of minimal regrowth after the first harvest.

Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 5. Dry matter yields, seedling vigor, maturity, plant height, and stand persistence of timothy varieties sown September 6, 2023, at Lexington, Kentucky.

	Seedling	Maturity ²	Plant		Percent Stand			Yield (to	ons/acre)	
Variety	Vigor ¹	2024	Height (in)	2023	20	24		20	24	
-	Oct 24, 2023	May 13	May 13, 2024	Oct 24	Mar 14	Oct 18	May 13	Jun 26	Oct 23	Total
Commercial V	arieties-Availab	le for Farm Us	e							
Conquest	4.9	56.5	35	100	100	100	2.83	0.64	0.48	3.96*.
Valor	4.8	56.0	33	100	100	100	2.93	0.55	0.33	3.82*
Carson	4.6	54.5	32	99	99	99	2.70	0.57	0.51	3.78*
Clair	4.8	55.0	32	100	100	100	2.95	0.45	0.38	3.78*
Zenyatta	5.0	56.0	36	100	100	100	2.83	0.53	0.37	3.73*
KY Early	4.9	56.5	36	100	100	100	2.77	0.55	0.32	3.64*
Dawn	4.9	56.0	32	100	100	100	2.83	0.48	0.32	3.63*
Sahara DT	4.6	53.5	31	99	98	99	2.72	0.42	0.36	3.49*
Barfleo	4.8	45.0	25	100	100	100	2.37	0.44	0.20	3.01
Express II	4.5	45.0	23	100	100	100	2.33	0.39	0.28	3.00
Climax	4.9	45.0	20	100	100	100	2.21	0.22	0.27	2.70
Barpenta	4.4	45.0	16	98	98	99	1.62	0.43	0.15	2.19
Mean	4.7	52.0	29	99	99	100	2.59	0.47	0.33	3.39
CV,%	6.0	1.3	6	1	1	1	10.50	25.96	36.64	9.87
LSD,0.05	0.4	0.9	2	1	1	1	0.39	0.18	0.17	0.48

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

Table 6. Dry matter yields, seedling vigor, maturity, and stand persistence of Kentucky bluegrass varieties sown September 10, 2021, at Lexington, Kentucky.

	e III:		Matu	ırity ²				Per	cent Sta	and					Yie	ld (tons	/acre)		
Variety	Seedling Vigor ¹	2022	20	23	2024	2021	20	22	20	23	20	24	2022	2023		20	24		3
variety	Oct 4, 2021	May 5	May 3	Jun 13	Apr 30	Oct 4	Mar 22	Oct 19	Mar 20	Oct 17	Mar 20	Oct 18	Total	Total	Apr 30	Jun- Aug ³	Oct 21	Total	3-year Total
Commercial Va	arieties-Availab	le for Fa	arm Use	•															
Ginger	4.3	58.0	59.5	29.0	66.0	100	100	100	100	100	100	100	1.72	1.50	0.69	_	0.13	0.82	4.04*
Park	5.0	55.5	55.0	29.0	64.0	100	100	100	100	100	100	100	1.50	1.22	0.38	_	0.23	0.61	3.32*
Isabel	4.1	52.0	54.0	66.0	63.0	100	100	100	100	100	100	100	1.02	0.70	0.19	-	0.12	0.31	2.04
Experimental	Varieties																		
RAD-4496	4.0	57.5	52.3	29.0	65.0	100	100	100	100	100	100	100	1.21	1.08	0.43	_	0.21	0.64	2.93
Mean	4.3	55.8	55.2	38.3	64.5	100	100	100	100	100	100	100	1.36	1.13	0.42		0.17	0.59	3.08
CV,%	7.2	1.0	4.6	0.0	1.3	1	0	0	0	0	0	0	19.72	22.58	24.13		18.58	20.75	17.32
LSD,0.05	0.5	0.9	4.1	0.0	1.3	1	0	0	0	0	0	0	0.43	0.41	0.16		0.05	0.20	0.85

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

Table 7. Dry matter yields, maturity, and stand persistence of Kentucky bluegrass varieties sown September 9, 2022, at Lexington, Kentucky.

	Matu	ırity ¹		P	ercent Star	nd				Yield (to	ns/acre)				
Variety	2023	2024	2022	20	23	20	24	2023		20	24		2-year		
	Jun 13	Apr 30	Dec 7	Mar 20	Oct 17	Mar 20	Oct 18	Total	Apr 30	Jun 24	Oct 22	Total	Total		
Commercial Varietie	ommercial Varieties-Available for Farm Use														
Ginger	66.0	66.0	48	66	94	97	99	0.74	1.00	0.19	0.26	1.36	2.09*		
Park	66.0	64.0	74	81	98	100	100	0.81	0.68	0.22	0.16	1.06	1.87*		
Tirem	66.0	64.0	18			82	85	0.53	0.44	0.29	0.06	0.78	1.31		
Experimental Variet	ies														
PST-K15-163A	66.0	66.0	34	63	92	96	98	0.84	0.70	0.17	0.16	1.04	1.88*		
Mean	66.0	65.0	45	64	93	93	96	0.73	0.70	0.22	0.15	1.04	1.77		
CV,%	0.0	0.0	25	7	8	14	12	26.17	14.93	36.06	50.16	19.94	13.53		
LSD,0.05	0.0	0.0	19	8	13	21	19	0.31	0.17	0.10	0.13	0.35	0.41		

¹ Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

^{*} Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

³ There was no mid-summer harvest because of minimal regrowth after the first harvest.

^{*} Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 8. Dry matter yields, seedling vigor, maturity, and stand persistence of Kentucky bluegrass varieties sown September 6, 2023, at Lexington, Kentucky.

	Seedling	Maturity ²		Percent Stand			Yield (to	ons/acre)	
Variety	Vigor ¹	2024	2023	20	24		20	24	
	Oct 24, 2023	Apr 30	Oct 24	Mar 14	Oct 18	Apr 30	Jun 25	Oct 23	Total
Commercial Varieties-Availab	le for Farm Use								
Park	5.0	63.5	100	100	100	0.74	0.32	0.13	1.19*
Ginger	4.0	64.5	100	100	100	0.83	0.22	0.14	1.19*
Fahrenheit 90	4.3	50.0	100	100	100	0.45	0.32	0.13	0.89
365ss	3.3	46.3	99	100	100	0.38	0.25	0.16	0.79
Tirem	3.3	47.5	96	100	97	0.34	0.16	0.13	0.63
Experimental Varieties									
BARPPPM251	3.8	58.5	99	100	100	0.49	0.36	0.15	1.01*
BARPPPM0211SSV	2.8	64.0	97	100	100	0.40	0.34	0.15	0.89
PST-K15-163A	2.8	53.0	94	99	98	0.47	0.23	0.14	0.83
Mean	3.6	55.9	98	100	99	0.51	0.27	0.14	0.93
CV,%	11.0	6.1	2	1	2	34.21	29.34	46.17	17.09
LSD,0.05	0.6	5.0	2	1	2	0.25	0.12	0.09	0.23

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

Table 9. Proprietors of timothy varieties in current trials.

Proprietor/KY Distributor
Available for Farm Use
Barenbrug USA
Barenbrug USA
Mountain View Seeds
Ky Agric. Exp. Station
Canada Agr. Res. Station
Allied Seed
Hood River Seed
Allied Seed
Smith Seed Services
DLF Pickseed
DLF Pickseed
DLF Pickseed
1
Green Consulting Services
Green Consulting Services

Experimental varieties are not available commercially, but provide an indication of the progress being made by forage breeding companies.

Table 10. Proprietors of Kentucky bluegrass varieties in current trials.

Variety	Proprietor/KY Distributor
Commercial Varieties-Ava	ailable for Farm Use
Fahrenheit 90	Mountain View Seeds
Ginger	ProSeeds Marketing
Isabel	Smith Seed Services
Park (certified)	Public
Tirem	DLF Pickseed
365ss	Mountain View Seeds
Experimental Varieties ¹	
BARPPPM0211SSV	Barenbrug USA
BARPPPM251	Barenbrug USA
PST-K15-163A	Pure Seed Testing
RAD-4496	Radix Research

Experimental varieties are not available commercially, but provide an indication of the progress being made by forage breeding companies.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

^{*} Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 11. Summary of Kentucky Timothy Yield Trials 2000-2024 (yield shown as a percentage of the mean of the commercial varieties in the trial).

										.exingto	n								_	ceton	Mean ³
Variety	Proprietor/KY Distributor	011,2	02	06	07	08	09	11	12	13	14	15	16	17	19	20	21	22	00	04	- (#trials
Alma	Newfield Seeds Co/Caudill Seed Co.	3yr ⁴	4yr	3yr	3yr	3yr	3yr	3yr	3yr	3yr	3yr	2yr	3yr	2yr 81	 						
	Columbia Seeds												01							01	
Anjo							0.5	01	101		100	00	81	0.4	02	00		00		-	- 05(10)
Barfleo	Barenbrug USA						95	91	101		108	80	97	94	92	98		89			95(10)
Baronaise	Barenbrug USA				7.4			00	00					0.4		83					
Barpenta	Barenbrug USA				74			82	82					94	92	90		77		-	84(7)
Carson	Mountain View Seeds													113	106	105	104	110			108(5)
Clair	Ky Agric. Exp. Station	104	113	107	95	107	104	112	99	97	111	107	88	88	85	96	110	101		122	103(18)
Classic	Cebeco International Seeds		86																	<u> </u>	<u> </u>
Climax	Canada Agr. Res. Station			79	102	104	98	102	100	82	96	90	102	92	98	94	81	71			93(15)
Colt	FS Growmark		100	90																99	96(3)
Common	Public	95																			-
Comtral	Caudill Seed								92	92										<u> </u>	92(2)
Conquest	Allied Seed, L.L.C.																107				_
Dawn	Columbia Seeds													103	107	110					107(3)
Derby	Southern States			112	111		106	112	108	112	119	123	112		112	104				124	113(12)
Dolina	DLF Pickseed		90																		-
Express	Seed Research of Oregon		95		91		97	95													95(4)
Express II	Allied Seed, L.L.C.																88	97			93(2)
Hokusei	Snow Brand Seed																				-
Joliette	Newfield Seeds Co/Caudill Seed Co.					86	89													90	88(3)
Jonaton	Newfield Seeds Co/Caudill Seed Co.																			84	-
KY Early	Smith Seed/Central Farm Supply	103	115			102				119				115	99	106	99	115			108(9)
Outlaw	Grassland West Company																		107		-
Sahara DT	DLF Pickseed																	121			-
Summergraze	Brett Young									96											-
Summit	Allied Seed, L.L.C.		112																		_
Talon	Seed Research of Oregon			110	112		108	106	109												109(5)
Tenho	Barenbrug USA										84										-
Treasure	Seed Research of Oregon			103	115		103	101	108												106(5)
Tuukka	Ampac Seed Company	94	88																93		92(3)
Valor	DLF Pickseed																101	100			101(2)
Varis	Mountain View Seeds										83										_
Zenyatta	DLF Pickseed									103			119		109	114	110	118			112(6)
Year trial was est				1					1		1	1									

¹ Year trial was established.
2 Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in the fall of 2017 was harvested three years, so the final report would be "2020 Timothy and Kentucky Bluegrass Report" archived in the UK Forage website (https://forages. ca.uky.edu).

3 Mean only presented when respective variety was included in two or more trials.

⁴ Number of years of data.

Table 12. Summary of Kentucky Bluegrass Yield Trials at Lexington 2004-2024 (yield shown as a percentage of the mean of the commercial varieties in the trial).

		041,2	06	07	08	09	10	11	12	13	14	16	17	18	19	20	21	22	Mean ³
Variety	Proprietor/KY Distributor	3yr ⁴	4yr	3yr	2yr	3yr	3yr	3yr	2yr	(#trials)									
Adam 1	Radix Research	98																	_
Balin	Pure Seed												91	80					86(2)
Barderby	Barenbrug USA			94		101	91	98	87	103	101	103	128	120	109	125			105(12)
Big Blue	Rose-AgriSeed					82			95										89(2)
Common	Public		71	66	68														68(3)
Ginger	ProSeeds Marketing		118	119	114	118	112	107	110	107	95	101	119	98	95	108	129	119	111(16)
Isabel	Smith Seed Services															64	65		65(2)
Kenblue	Public	102	133				96	95	118	95	100								106(7)
Lato	Turf Seed Inc.			122															_
Park (certified)	Public								90	95	104	117	88	102	96	102	106	106	101(10)
RAD-5	Radix Research		103																_
RAD-339	Radix Research		101																_
RAD-643	Radix Research		94																_
RAD-731zx	Radix Research		87																_
RAD-762	Radix Research		94																_
RAD-1039	Radix Research				118														_
Tirem	DLF Pickseed											79	74					75	77(2)

¹ Year trial was established.

² Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in the fall of 2017 was harvested three years, so the final report would be "2020 Timothy and Kentucky Bluegrass Report" archived in the UK Forage website (https://forages. ca.uky.edu).

Mean only presented when respective variety was included in two or more trials.

Number of years of data.

2024 Timothy and Kentucky Bluegrass Report

