# 2005 Red and White Clover Report

G.L. Olson, S.R. Smith, N.L. Taylor, G.D. Lacefield, and D.C. Ditsch

### Introduction

Red clover (Trifolium pratense L.) is a high-quality, short-lived, perennial legume that is used in mixed or pure stands for pasture, hay, silage, green chop, soil improvement, and wildlife habitat. This species is adapted to a wide range of climatic and soil conditions and, therefore, is versatile as a forage crop. Stands of improved varieties are generally productive for two to three years, with the highest yields occurring in the year following establishment. Red clover is used primarily as a renovation legume for grass pastures. It is a dominant forage legume in Kentucky because it is relatively easy to establish and has high forage quality, high yield, and animal acceptance. White clover (Trifolium repens L.) is a low-growing, perennial pasture legume with white flowers. It differs from red clover in that the stems (stolons) grow along the surface of the soil and can form adventitious roots that may lead to the development of new plants. Three types of white clover grow in Kentucky: Dutch, intermediate, and ladino. The intermediate type has been developed to persist better than the ladino type under pasture or continuous grazing conditions. Ladino white clover has larger leaves and taller growth than the intermediate and Dutch types.

Yield and persistence of red and white clover varieties are dependent on environment and pressure from diseases and insects. The most common red clover diseases in Kentucky are southern anthracnose, powdery mildew, sclerotinia crown rot, and root rots. For white clover, the most common pests are stolon rots, root rots, and potato leafhoppers. High yield and persistence (as measured by percent stand) are two indications that a red or white clover variety is resistant to or tolerant of these pests when grown in Kentucky.

This report provides current yield data on red and white clover varieties included in yield trials in Kentucky as well as guidelines for selecting clover varieties. Go to the UK Forage Extension Web site at www.uky.edu/AG/FORAGE to obtain electronic versions of all forage variety testing reports as well as other forage publications.

## **Important Selection Considerations**

Local adaptation and persistence. The variety should be adapted to Kentucky as indicated by superior performance across years and locations in replicated yield trials such as those reported in this publication. High-yielding varieties are generally also those varieties that are the most persistent. Improved red clover generally produces measurable yields for three years, with the year of establishment considered as the first year. The highest yields occur in the year following establishment. White clover may persist longer than red clover, particularly in wet seasons, often by virtue of its reseeding ability.

**Seed quality.** Buy high-quality seed that is high in germination and purity and free from weed seed. Buy certified seed or proprietary seed of an improved variety. An improved variety is one that has performed well in independent trials, such as those reported in this publication. Other information on the label will include the test date, which must be within the previous nine months, the level of germination, and other crop and weed seed. Order seed well in advance of planting time to assure that it will be available when needed.

## **Description of the Tests**

This report summarizes studies at Lexington (one in 2003 and two in 2004), Princeton (one in 2003 and two in 2005), Quicksand (sown in 2005) and Eden Shale (sown in 2003). Two other trials (one red clover and one white clover) were planted in Lexington in 2005, but stands did not establish well due to environmental conditions. These two trials will be replanted in the spring of 2006. The soils at Princeton (Crider), Lexington (Maury), and Quicksand (Pope) were well-drained silt loams. Eden Shale has a Nicholson silt loam soil. All are well suited to clover production. Plots were 5 by 15 feet and were arranged in a randomized complete block design with four replications at every location.

Seedings were made at 12 pounds of seed per acre for red clover and 3 pounds per acre for white clover into a prepared seedbed using a disk drill. The first cutting in the seeding year was delayed to allow the clover to completely reach maturity as indicated by full bloom, which generally occurs about 60 to 90 days after seeding. Otherwise, harvests were taken when the clover was in the bud to early flower stage using a sickle-type forage plot harvester. Fresh weight samples were taken at each harvest to calculate percent dry matter production. All tests for establishment, fertility, and harvest management were managed according to University of Kentucky Cooperative Extension Service recommendations. Weeds were controlled to avoid limiting production and persistence.

#### **Results and Discussion**

Weather data for Quicksand, Lexington, Eden Shale, and Princeton are presented in Tables 1 through 4.

Yield data (on a dry matter basis) are presented in Tables 5 through 12. Yields are given by cutting date and as total annual production. Varieties are listed in order from highest to lowest total production (for the life of the test). Experimental varieties are listed separately at the bottom of the tables and are not available commercially. Yields are given by cutting for 2005 and by year for each prior year.

Statistical analyses were performed on all clover data (including experimental varieties) to determine if the apparent differences are truly due to variety. Varieties not significantly different from the top variety within a column are marked with one asterisk (\*). To determine if two varieties are truly different, compare the difference between the two varieties with the Least Significant Difference (LSD) at the bottom of the column. If the difference is equal to or greater than the LSD, the varieties are truly different when grown under the conditions at a given location. The Coefficient of Variation (CV), which is a measure of the variability of the data, is included for each column of means. Low variability is desirable, and increased variability within a study results in higher CVs and larger LSDs.

Certified Kenland continues to rank near the top of tests. It is important to note yield differences between certified and uncertified Kenland red clover. Most Kenland offered for sale is uncertified, but our tests show it is significantly lower in yield than certified Kenland. White clover varieties, as managed in these trials, yielded less than most red clover varieties but were more persistent. Again, certified seed of improved varieties is recommended.

In addition to the commercially available varieties and experimental lines, selected "common" red clovers are included in the variety tests for comparison. Common red clover, generally sold as "medium red clover variety unknown," is unimproved red clover with unknown performance. Several years of testing show only about one out of every 10 common red clovers is as productive as certified or proprietary red clovers. In Kentucky, the yield advantage of seeding better red clovers compared to common types is 3 to 6 tons of dry matter over the life of the stand.

Tables 13 and 14 summarize information about proprietors, distributors, and yield performance across years and locations for all varieties currently included in this report. Varieties are listed in alphabetical order, with the experimental varieties at the bottom. Experimental varieties are not available for farm use, but commercial varieties can be purchased from dealerships. In Tables 13 and 14, an open block indicates that the variety was

not included in that particular test (labeled at the top of the column), and an (x) in the block means that the variety was included in the test but yielded significantly less than the top yielding variety in the test. A single asterisk (\*) means that the variety was not significantly different from the highest-yielding variety. Look at data from several years and locations when choosing a variety of clover rather than results from one test year as is reported in Tables 5 through 12. Make sure seed of the variety selected is properly labeled and will be available when needed.

## Summary

Red and white clovers can be productive components of pasture and hayfields. Choose varieties with proven performance in yield and persistence.

Other College of Agriculture publications related to the establishment, management, and harvesting of clover are available from the county Extension office are listed below:

- AGR-1 Lime and Fertilizer Recommendations
- AGR-2 Producing Red Clover Seed in Kentucky
- AGR-18 Grain and Forage Crop Guide for Kentucky
- AGR-26 Renovating Hay and Pasture Fields
- AGR-33 Growing Red Clover in Kentucky
- AGR-64 Establishing Forage Crops
- AGR-90 Inoculation of Forage Legumes
- AGR-93 Growing White Clover in Kentucky
- AGR-148 Weed Control Strategies for Alfalfa and Other Forage Legume Crops
- ENT-17 Insect Management Recommendations for Field Crops and Livestock
- PPA-10D Kentucky Plant Disease Management Guide for Forage Legumes

#### **Authors**

- G.L. Olson, Research Specialist, Forages, UK Department of Plant and Soil Sciences
- S.R. Smith, Extension Associate Professor, Forages, UK Department of Plant and Soil Sciences
- N.L. Taylor, Professor, Clover Breeding, UK Department of Plant and Soil Sciences
- G.D. Lacefield, Extension Professor, Forages, UK Department of Plant and Soil Sciences
- D.C. Ditsch, Extension Associate Professor, Feed Production, UK Department of Plant and Soil Sciences

| Table '  | 1. Tempe    | erature  | and rair  | fall at L | .exingto    | n, Kent | ucky in  | 2003, 2 | 004 and     | 2005. |          |        |
|----------|-------------|----------|-----------|-----------|-------------|---------|----------|---------|-------------|-------|----------|--------|
|          |             | 20       | 03        |           |             | 20      | 04       |         |             | 20    | 05       |        |
|          | Temperature |          | Rainfall  |           | Temperature |         | Rainfall |         | Temperature |       | Rainfall |        |
|          | °F          | DEP      | IN        | DEP       | °F          | DEP     | IN       | DEP     | °F          | DEP   | IN       | DEP    |
| JAN      | 26          | -5       | 0.96      | -1.90     | 30          | -1      | 3.14     | +0.28   | 37          | +6    | 4.35     | +1.49  |
| FEB      | 32          | -3       | 3.59      | +0.38     | 36          | +1      | 1.32     | -1.89   | 39          | +4    | 1.68     | -1.53  |
| MAR      | 47          | +3       | 2.09      | -2.31     | 47          | +3      | 3.43     | -0.97   | 41          | -3    | 2.79     | -1.61  |
| APR      | 57          | +2       | 3.14      | -0.74     | 55          | 0       | 3.06     | -0.82   | 56          | +1    | 3.30     | -0.58  |
| MAY      | 63          | -1       | 6.68      | +2.21     | 68          | +4      | 9.79     | +5.32   | 61          | -3    | 1.78     | -2.69  |
| JUN      | 69          | -3       | 4.85      | +1.19     | 72          | 0       | 3.13     | -0.53   | 75          | +3    | 1.33     | -2.33  |
| JUL      | 74          | -2       | 2.68      | -2.32     | 73          | -3      | 7.65     | +2.65   | 77          | +1    | 3.30     | -1.70  |
| AUG      | 75          | 0        | 5.26      | +1.33     | 71          | -4      | 2.91     | -1.02   | 78          | +3    | 3.34     | -0.59  |
| SEP      | 65          | -3       | 4.22      | +1.02     | 68          | 0       | 2.61     | -0.59   | 72          | +4    | 0.59     | -2.21  |
| OCT      | 56          | -1       | 1.61      | -0.96     | 58          | +1      | 5.65     | +3.08   | 58          | +1    | 0.92     | -1.65  |
| NOV      | 50          | +5       | 4.63      | +1.24     | 49          | +4      | 6.29     | +2.90   | 47          | +2    | 1.54     | -1.85  |
| DEC      | 36          | 0        | 3.26      | -0.72     | 36          | 0       | 3.20     | -0.78   |             |       |          |        |
| Total    |             |          | 42.97     | -1.58     |             |         | 52.18    | +7.63   |             |       | 25.32    | -15.25 |
| DEP is d | leparture   | from the | long-terr | n averag  | е.          |         |          |         |             |       |          |        |

|       |             | 20  | 03       |       |             | 2004 |          |       |             | 20  | 05       |       |
|-------|-------------|-----|----------|-------|-------------|------|----------|-------|-------------|-----|----------|-------|
|       | Temperature |     | Rainfall |       | Temperature |      | Rainfall |       | Temperature |     | Rainfall |       |
|       | °F          | DEP | IN       | DEP   | °F          | DEP  | IN       | DEP   | °F          | DEP | IN       | DEP   |
| JAN   | 31          | -3  | 2.19     | -1.61 | 36          | +2   | 4.12     | +0.32 | 41          | +7  | 5.30     | +1.50 |
| FEB   | 35          | -3  | 7.45     | +3.02 | 39          | +1   | 2.44     | -1.99 | 43          | +5  | 2.30     | -2.13 |
| MAR   | 50          | +3  | 2.46     | -2.48 | 53          | +6   | 4.28     | -0.66 | 47          | 0   | 4.11     | -0.83 |
| APR   | 60          | +1  | 6.99     | +2.19 | 59          | 0    | 5.32     | +0.52 | 60          | +1  | 4.61     | -0.19 |
| MAY   | 67          | 0   | 4.81     | -0.15 | 72          | +5   | 7.34     | +2.38 | 65          | -2  | 1.54     | -3.42 |
| JUN   | 71          | -4  | 5.05     | +1.20 | 74          | -1   | 3.40     | -0.45 | 76          | +1  | 3.09     | -0.76 |
| JUL   | 79          | +1  | 4.75     | +0.46 | 75          | -3   | 4.87     | +0.58 | 79          | +1  | 2.39     | -1.90 |
| AUG   | 79          | +2  | 2.05     | -1.96 | 73          | -4   | 3.02     | -0.99 | 80          | +3  | 11.54    | +7.53 |
| SEP   | 69          | -2  | 6.17     | +2.84 | 71          | 0    | 0.20     | -3.13 | 74          | +2  | 2.17     | -1.16 |
| OCT   | 60          | +1  | 3.73     | +0.68 | 64          | +5   | 4.03     | +0.98 | 60          | +1  | 0.19     | -2.86 |
| NOV   | 53          | +6  | 5.85     | +1.22 | 53          | +6   | 6.94     | +2.31 | 50          | +3  | 2.48     | -2.15 |
| DEC   | 40          | +1  | 2.39     | -2.65 | 37          | -1   | 4.29     | -0.75 |             |     |          |       |
| Total |             |     | 53.89    | +2.76 |             |      | 50.25    | -0.88 |             |     | 39.72    | -6.37 |

| Table 3. Temperature and rainfall at Eden Shale, Kentucky in 2004 |
|-------------------------------------------------------------------|
| and 2005.                                                         |

|           |           | 20        | 04       |         |       | 20     | 05    |        |
|-----------|-----------|-----------|----------|---------|-------|--------|-------|--------|
|           | Tempe     | rature    | Ra       | infall  | Tempe | rature | Ra    | infall |
|           | °F        | DEP       | IN       | DEP     | °F    | DEP    | IN    | DEP    |
| JAN       | 30        | 0         | 4.3      | +1.76   | 35    | +5     | 5.67  | +3.13  |
| FEB       | 36        | +3        | 1.35     | -1.4    | 39    | +6     | 1.98  | -0.77  |
| MAR       | 48        | +5        | 2.92     | -1.8    | 40    | -3     | 3.78  | -0.94  |
| APR       | 56        | +2        | 4.32     | +0.17   | 56    | +2     | 3.65  | 050    |
| MAY       | 69        | +6        | 7.8      | +3.39   | 61    | -2     | 2.09  | -2.32  |
| JUN       | 72        | +1        | 1.66     | -2.11   | 75    | +4     | 1.52  | -1.85  |
| JUL       | 73        | -2        | 3.37     | -1.16   | 78    | +3     | 3.22  | -1.21  |
| AUG       | 71        | -3        | 3.86     | +0.13   | 78    | +4     | 8.59  | +4.89  |
| SEP       | 69        | +1        | 2.14     | -1.05   | 71    | +3     | 1.56  | -1.63  |
| OCT       | 58        | +1        | 6.51     | +3.52   | 58    | +1     | 1.74  | -1.25  |
| NOV       | 49        | +4        | 5.02     | +1.47   | 47    | +2     | 3.61  | +0.06  |
| DEC       | 34        | -1        | 3.38     | -0.05   |       |        |       |        |
| Total     |           |           | 46.63    | +2.87   |       |        | 37.81 | -2.52  |
| DEP is de | parture f | rom the l | ong-term | average |       |        |       |        |

|           | Table 4. Temperature and rainfall at Quicksand, Kentucky in 2005. |         |       |        |  |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------|---------|-------|--------|--|--|--|--|--|--|--|
|           | 2005                                                              |         |       |        |  |  |  |  |  |  |  |
|           | Tempe                                                             | erature | Ra    | infall |  |  |  |  |  |  |  |
|           | °F                                                                | DEP     | IN    | DEP    |  |  |  |  |  |  |  |
| JAN       | 40                                                                | +9      | 4.45  | +1.16  |  |  |  |  |  |  |  |
| FEB       | 42                                                                | +9      | 3.01  | -0.59  |  |  |  |  |  |  |  |
| MAR       | 44                                                                | +3      | 2.86  | -1.48  |  |  |  |  |  |  |  |
| APR       | 58                                                                | +5      | 6.63  | +2.53  |  |  |  |  |  |  |  |
| MAY       | 63                                                                | +1      | 2.05  | -2.43  |  |  |  |  |  |  |  |
| JUN       | 75                                                                | +5      | 2.39  | -1.43  |  |  |  |  |  |  |  |
| JUL       | 78                                                                | +4      | 2.58  | -2.67  |  |  |  |  |  |  |  |
| AUG       | 79                                                                | +6      | 3.51  | -0.50  |  |  |  |  |  |  |  |
| SEP       | 72                                                                | +6      | 0.27  | -3.25  |  |  |  |  |  |  |  |
| OCT       | 59                                                                | +5      | 0.68  | -2.23  |  |  |  |  |  |  |  |
| NOV       | 49                                                                | +7      | 1.30  | -2.58  |  |  |  |  |  |  |  |
| DEC       |                                                                   |         |       |        |  |  |  |  |  |  |  |
| Total     |                                                                   |         | 29.73 | -13.47 |  |  |  |  |  |  |  |
| DEP is de | DEP is departure from the long-term average                       |         |       |        |  |  |  |  |  |  |  |

|                             | 20        | 05          |       |       | Yie    | ld (tons/a | cre)   |       |       |
|-----------------------------|-----------|-------------|-------|-------|--------|------------|--------|-------|-------|
|                             | Percen    | t Stand     | 2003  | 2004  |        | 20         | 05     |       | 3-yr  |
| Variety                     | Apr 8     | Jul 25      | Total | Total | May 23 | June 23    | Jul 25 | Total | Total |
| <b>Commercial Varietie</b>  | s—Availab | le for Farr | n Use |       |        |            |        |       |       |
| Certified Kenland           | 43        | 29          | 1.20  | 5.50  | 1.18   | 0.22       | 0.06   | 1.46  | 8.15* |
| Cinnamon Plus               | 53        | 18          | 0.87  | 4.98  | 0.68   | 0.12       | 0.02   | 0.83  | 6.68  |
| Freedom!                    | 35        | 25          | 0.98  | 4.99  | 0.46   | 0.14       | 0.07   | 0.67  | 6.63  |
| Kenton(KNARS)               | 28        | 18          | 0.86  | 4.87  | 0.34   | 0.12       | 0.04   | 0.49  | 6.23  |
| Advantage(white)            | 48        | 65          | 1.18  | 3.80  | 0.77   | 0.16       | 0.11   | 1.04  | 6.02  |
| Solid                       | 9         | 7           | 1.04  | 4.42  | 0.26   | 0.07       | 0.01   | 0.34  | 5.80  |
| Patriot(white)              | 65        | 60          | 0.96  | 3.07  | 0.67   | 0.21       | 0.02   | 0.90  | 4.93  |
| Common                      | 0         | 1           | 0.95  | 3.22  | 0.51   | 0.01       | 0.00   | 0.52  | 4.70  |
| Regal(white)                | 28        | 55          | 1.03  | 2.92  | 0.53   | 0.06       | 0.07   | 0.66  | 4.61  |
| Durana(white)               | 60        | 38          | 1.03  | 2.58  | 0.76   | 0.12       | 0.03   | 0.91  | 4.52  |
| GDQ                         | 1         | 1           | 0.94  | 3.48  | 0.02   | 0.00       | 0.00   | 0.03  | 4.45  |
| Barblanca(white)            | 73        | 83          | 1.01  | 2.39  | 0.78   | 0.17       | 0.04   | 1.00  | 4.40  |
| GDLH                        | 0         | 0           | 0.95  | 3.13  | 0.30   | 0.00       | 0.00   | 0.31  | 4.39  |
| Colt(white)                 | 80        | 50          | 0.83  | 2.59  | 0.77   | 0.13       | 0.00   | 0.91  | 4.33  |
| GDSG                        | 1         | 0           | 0.88  | 3.31  | 0.01   | 0.00       | 0.00   | 0.02  | 4.21  |
| <b>Experimental Varieti</b> | es        |             |       |       |        |            |        |       |       |
| Freedom!MR                  | 45        | 30          | 1.15  | 5.69  | 0.77   | 0.28       | 0.07   | 1.13  | 7.96* |
| KY Tetraploid               | 28        | 26          | 1.17  | 5.19  | 0.58   | 0.15       | 0.05   | 0.77  | 7.14* |
| Low Phenolic                | 30        | 23          | 1.08  | 5.06  | 0.52   | 0.07       | 0.06   | 0.65  | 6.79  |
| CW7000(white)               | 55        | 78          | 1.40  | 3.31  | 1.15   | 0.29       | 0.16   | 1.60  | 6.31  |
|                             |           |             |       |       |        |            |        |       |       |
| Mean                        | 36        | 32          | 1.03  | 3.92  | 0.58   | 0.12       | 0.04   | 0.75  | 5.70  |
| CV,%                        | 33        | 35          | 18.65 | 18.26 | 66.54  | 69.02      | 89.66  | 56.84 | 15.94 |
| LSD,0.05                    | 17        | 16          | 0.27  | 1.02  | 0.55   | 0.12       | 0.05   | 0.60  | 1.29  |

|                          | 20            | 05           |          |        | Yield (to | ns/acre) |       |       |
|--------------------------|---------------|--------------|----------|--------|-----------|----------|-------|-------|
|                          | Percent Stand |              | 2004     |        |           | 2-yr     |       |       |
| Variety                  | Apr 8         | Oct 28       | Total    | May 23 | June 23   | Jul 25   | Total | Total |
| Commercial Variet        | ties—Ava      | ilable for I | Farm Use |        |           |          |       |       |
| Certified Kenland        | 96            | 60           | 2.95     | 2.61   | 1.06      | 0.30     | 3.97  | 6.92* |
| Freedom!                 | 95            | 60           | 2.72     | 2.51   | 1.14      | 0.37     | 4.02  | 6.74* |
| FSG9601                  | 90            | 25           | 3.17     | 2.26   | 0.53      | 0.12     | 2.90  | 6.08  |
| Redland Max              | 90            | 33           | 2.54     | 2.74   | 0.51      | 0.24     | 3.50  | 6.04  |
| Emarwan                  | 90            | 20           | 2.58     | 2.52   | 0.67      | 0.25     | 3.44  | 6.02  |
| Red Gold Plus            | 90            | 44           | 2.98     | 2.11   | 0.62      | 0.24     | 2.97  | 5.95  |
| Kenway(KVMRS)            | 95            | 48           | 2.31     | 2.34   | 0.84      | 0.31     | 3.49  | 5.80  |
| Kenton(KNARS)            | 88            | 51           | 2.72     | 1.94   | 0.83      | 0.25     | 3.01  | 5.74  |
| <b>Experimental Vari</b> | eties         |              |          |        |           |          |       |       |
| KY tetraploid            | 96            | 88           | 3.08     | 3.13   | 0.89      | 0.38     | 4.40  | 7.47* |
| CW10002                  | 94            | 58           | 2.96     | 2.29   | 0.73      | 0.29     | 3.31  | 6.27* |
| ZR0005R                  | 90            | 23           | 2.86     | 2.16   | 0.86      | 0.37     | 3.39  | 6.25* |
| Freedom!MR               | 89            | 45           | 2.83     | 2.49   | 0.67      | 0.14     | 3.30  | 6.12  |
| WVPB-RC-NT               | 89            | 38           | 2.72     | 2.48   | 0.61      | 0.13     | 3.22  | 5.94  |
| Low Phenolic             | 78            | 26           | 2.35     | 2.59   | 0.67      | 0.22     | 3.48  | 5.83  |
| ZR0004R                  | 91            | 38           | 2.50     | 2.08   | 0.47      | 0.21     | 2.75  | 5.26  |
| GAc1RC                   | 56            | 10           | 2.18     | 2.01   | 0.40      | 0.05     | 2.47  | 4.65  |
|                          |               |              |          |        |           |          |       |       |
| Mean                     | 88            | 42           | 2.71     | 2.39   | 0.72      | 0.24     | 3.35  | 6.06  |
| CV,%                     | 13            | 53           | 18.78    | 18.61  | 39.43     | 61.97    | 18.49 | 15.29 |
| LSD,0.05                 | 17            | 32           | 0.73     | 0.64   | 0.41      | 0.21     | 0.89  | 1.33  |

|                         | 20            | 05         |          |       |        | Yield (to | ns/acre) |         |       |                    |
|-------------------------|---------------|------------|----------|-------|--------|-----------|----------|---------|-------|--------------------|
|                         | Percent Stand |            | 2003     | 2004  | 2005   |           |          |         |       |                    |
| Variety                 | Apr 15        | Sep 21     | Total    | Total | May 12 | June 13   | Jul 29   | Sept 21 | Total | 3-yr<br>Total      |
| <b>Commercial Varie</b> | ties—Ava      | ilable for | Farm Use |       |        |           |          |         |       |                    |
| Freedom!                | 40            | 3          | 3.81     | 7.27  | 0.82   | 0.51      | 0.55     | 0.00    | 1.89  | 12.97              |
| Certified Kenland       | 33            | 1          | 3.75     | 6.67  | 0.65   | 0.50      | 0.47     | 0.00    | 1.62  | 12.04              |
| Kenton(KNARS)           | 33            | 1          | 3.65     | 6.27  | 0.48   | 0.49      | 0.35     | 0.00    | 1.33  | 11.26              |
| Solid                   | 5             | 1          | 3.95     | 5.78  | 0.17   | 0.25      | 0.15     | 0.00    | 0.57  | 10.30              |
| GDQ                     | 2             | 0          | 3.87     | 5.01  | 0.02   | 0.14      | 0.02     | 0.00    | 0.19  | 9.08               |
| GDSG                    | 1             | 0          | 3.44     | 5.17  | 0.01   | 0.08      | 0.03     | 0.00    | 0.13  | 8.74               |
| GDLH                    | 1             | 0          | 3.56     | 5.04  | 0.01   | 0.02      | 0.01     | 0.00    | 0.04  | 8.64               |
| Common                  | 0             | 0          | 3.28     | 4.66  | 0.00   | 0.00      | 0.00     | 0.00    | 0.01  | 7.95               |
| Regal(white)            | 45            | 58         | 3.03     | 4.00  | 0.43   | 0.27      | 0.10     | 0.09    | 0.90  | 7.93               |
| CA Ladino(white)        | 30            | 35         | 2.96     | 3.90  | 0.45   | 0.32      | 0.07     | 0.01    | 0.85  | 7.71               |
| Patriot(white)          | 40            | 70         | 2.51     | 4.25  | 0.42   | 0.27      | 0.13     | 0.08    | 0.90  | 7.66               |
| Durana(white)           | 28            | 50         | 2.22     | 3.76  | 0.25   | 0.16      | 0.04     | 0.04    | 0.49  | 6.48               |
| <b>Experimental Var</b> | ieties        |            |          |       |        |           |          |         |       |                    |
| KY Tetraploid           | 58            | 10         | 3.92     | 8.86  | 0.92   | 0.71      | 0.66     | 0.06    | 2.35  | 15.13 <sup>3</sup> |
| Freedom!MR              | 30            | 1          | 4.01     | 7.15  | 0.50   | 0.49      | 0.44     | 0.00    | 1.43  | 12.59              |
| Low Phenolic            | 19            | 3          | 3.73     | 7.04  | 0.46   | 0.44      | 0.46     | 0.00    | 1.37  | 12.14              |
| Mean                    | 24            | 16         | 3.45     | 5.66  | 0.37   | 0.31      | 0.23     | 0.02    | 0.94  | 10.04              |
| CV,%                    | 51            | 59         | 10.55    | 14.70 | 64.69  | 40.27     | 56.09    | 84.80   | 38.27 | 11.01              |
| LSD,0.05                | 17            | 13         | 0.32     | 1.19  | 0.35   | 0.18      | 0.19     | 0.04    | 0.51  | 1.58               |

|                         | Seedling                      | Percent         |        |           |            |       |
|-------------------------|-------------------------------|-----------------|--------|-----------|------------|-------|
|                         | Vigor <sup>1</sup><br>Jun 13, | Stand<br>Oct 6, | ,      | 005 Yield | (tons/acre |       |
| Variety                 | 2005                          | 2005            | Jun 27 | Jul 29    | Sept 21    | Total |
| Commercial Varie        | ties—Availa                   | ble for Farn    |        |           | <b> </b>   |       |
| Freedom!                | 4.8                           | 100             | 0.63   | 0.66      | 0.62       | 1.91* |
| Cinnamon Plus           | 5.0                           | 100             | 0.57   | 0.59      | 0.37       | 1.53  |
| Dominion                | 5.0                           | 99              | 0.47   | 0.68      | 0.37       | 1.52  |
| AA117ER                 | 5.0                           | 98              | 0.51   | 0.61      | 0.28       | 1.40  |
| Certified Kenland       | 4.5                           | 95              | 0.47   | 0.46      | 0.39       | 1.32  |
| TripleTrust 350         | 5.0                           | 95              | 0.56   | 0.41      | 0.33       | 1.30  |
| Kenton                  | 5.0                           | 96              | 0.57   | 0.43      | 0.28       | 1.27  |
| Kenway                  | 5.0                           | 100             | 0.54   | 0.41      | 0.31       | 1.26  |
| Solid                   | 4.0                           | 86              | 0.48   | 0.37      | 0.22       | 1.07  |
| CommonC                 | 4.8                           | 74              | 0.39   | 0.48      | 0.14       | 1.01  |
| CommonA                 | 5.0                           | 58              | 0.50   | 0.33      | 0.09       | 0.92  |
| <b>Experimental Var</b> | ieties                        |                 |        |           |            |       |
| RC9603                  | 4.8                           | 100             | 0.54   | 0.70      | 0.43       | 1.67* |
| Freedom!MR              | 5.0                           | 100             | 0.52   | 0.68      | 0.42       | 1.63* |
| KY Tetraploid           | 5.0                           | 99              | 0.52   | 0.51      | 0.47       | 1.50  |
| RC9602                  | 5.0                           | 99              | 0.55   | 0.58      | 0.31       | 1.45  |
| Low Phenolic            | 5.0                           | 99              | 0.63   | 0.31      | 0.40       | 1.34  |
|                         |                               |                 |        |           |            |       |
| Mean                    | 4.9                           | 94              | 0.53   | 0.51      | 0.34       | 1.38  |
| CV,%                    | 8.2                           | 5               | 19.94  | 41.64     | 19.55      | 17.95 |
| LSD,0.05                | 0.6                           | 7               | 0.15   | 0.30      | 0.09       | 0.35  |

|                          | 2005<br>Percent Stand |             | Yield (tons/acre) |        |        |       |       |       |       |  |  |  |
|--------------------------|-----------------------|-------------|-------------------|--------|--------|-------|-------|-------|-------|--|--|--|
|                          |                       |             | 2004              | 2005   |        |       |       |       | 2-yr  |  |  |  |
| Variety                  | Apr 12                | Oct 28      | Total             | May 25 | Jun 29 | Aug 8 | Oct 4 | Total | Total |  |  |  |
| Commercial Varie         | ties—Avail            | able for Fa | m Use             |        |        |       |       |       |       |  |  |  |
| Freedom!                 | 80                    | 49          | 2.89              | 0.68   | 0.49   | 0.34  | 0.04  | 1.55  | 4.43* |  |  |  |
| Certified Kenland        | 79                    | 28          | 2.58              | 0.91   | 0.52   | 0.20  | 0.07  | 1.70  | 4.28  |  |  |  |
| Kenton(KNARS)            | 76                    | 33          | 2.85              | 0.78   | 0.36   | 0.21  | 0.06  | 1.41  | 4.26  |  |  |  |
| Solid                    | 50                    | 19          | 2.59              | 0.57   | 0.33   | 0.12  | 0.05  | 1.07  | 3.66  |  |  |  |
| GDLH                     | 28                    | 2           | 2.64              | 0.16   | 0.17   | 0.02  | 0.00  | 0.36  | 2.99  |  |  |  |
| GDQ                      | 20                    | 2           | 2.51              | 0.14   | 0.12   | 0.02  | 0.00  | 0.28  | 2.79  |  |  |  |
| GDSG                     | 25                    | 2           | 2.40              | 0.19   | 0.11   | 0.04  | 0.00  | 0.33  | 2.73  |  |  |  |
| Common                   | 11                    | 1           | 2.19              | 0.11   | 0.08   | 0.00  | 0.00  | 0.19  | 2.38  |  |  |  |
| Regal(white)             | 0                     | 68          | 1.72              | 0.01   | 0.02   | 0.05  | 0.14  | 0.22  | 1.93  |  |  |  |
| Patriot(white)           | 9                     | 53          | 1.60              | 0.02   | 0.07   | 0.02  | 0.10  | 0.20  | 1.80  |  |  |  |
| Durana(white)            | 1                     | 53          | 1.63              | 0.01   | 0.01   | 0.00  | 0.07  | 0.10  | 1.73  |  |  |  |
| <b>Experimental Vari</b> | ieties                |             |                   |        |        |       |       | ,     | -     |  |  |  |
| Freedom!MR               | 81                    | 45          | 3.10              | 0.99   | 0.61   | 0.31  | 0.10  | 2.01  | 5.11* |  |  |  |
| KY Tetraploid            | 79                    | 53          | 2.61              | 1.01   | 0.53   | 0.33  | 0.12  | 2.00  | 4.60* |  |  |  |
| Low Phenolic             | 50                    | 14          | 2.73              | 0.44   | 0.18   | 0.12  | 0.05  | 0.79  | 3.52  |  |  |  |
|                          |                       |             |                   |        |        |       |       |       |       |  |  |  |
| Mean                     | 42                    | 30          | 2.43              | 0.43   | 0.26   | 0.13  | 0.06  | 0.87  | 3.30  |  |  |  |
| CV,%                     | 26                    | 46          | 13.05             | 48.76  | 48.32  | 60.30 | 76.26 | 40.74 | 15.25 |  |  |  |
| LSD,0.05                 | 16                    | 20          | 0.45              | 0.3    | 0.18   | 0.11  | 0.09  | 0.51  | 0.72  |  |  |  |

| Table 10. Dry matter yields (tons/acre) and stand ratio | ng |
|---------------------------------------------------------|----|
| of red clover varieties sown April 6, 2005 at Quicksan  | d, |
| Kentucky.                                               |    |

|                         | Percent<br>Stand<br>Dec. 5, | 2005         | Yield (tons | s/acre) |
|-------------------------|-----------------------------|--------------|-------------|---------|
| Variety                 | 2005                        | Jul 11       | Aug 15      | Total   |
| <b>Commercial Varie</b> | ties—Ava                    | ilable for I | Farm Use    |         |
| Cinnamon Plus           | 97                          | 1.61         | 0.81        | 2.42*   |
| Kenton                  | 98                          | 1.50         | 0.92        | 2.42*   |
| Certified Kenland       | 98                          | 1.50         | 0.91        | 2.41*   |
| Solid                   | 90                          | 1.61         | 0.75        | 2.36*   |
| Dominion                | 97                          | 1.47         | 0.84        | 2.31*   |
| Kenway                  | 98                          | 1.46         | 0.73        | 2.18*   |
| Common A                | 55                          | 1.79         | 0.36        | 2.15*   |
| Freedom!                | 98                          | 1.28         | 0.83        | 2.11*   |
| TripleTrust 350         | 87                          | 1.39         | 0.57        | 1.96*   |
| AA117ER                 | 88                          | 1.14         | 0.42        | 1.57    |
| Common C                | 15                          | 1.21         | 0.19        | 1.40    |
| <b>Experimental Var</b> | ieties                      |              |             |         |
| Freedom! MR             | 95                          | 1.54         | 0.87        | 2.41*   |
| RC 9602                 | 98                          | 1.45         | 0.93        | 2.38*   |
| RC 9603                 | 95                          | 1.25         | 0.75        | 2.01*   |
| KY Tetraploid           | 93                          | 1.32         | 0.42        | 1.74    |
| Low Phenolic            | 95                          | 1.18         | 0.54        | 1.73    |
|                         |                             |              |             |         |
| Mean                    | 87                          | 1.42         | 0.68        | 2.10    |
| CV,%                    | 8                           | 13.79        | 29.67       | 16.83   |
| LSD,0.05                | 12                          | 0.33         | 0.34        | 0.59    |
|                         | 12                          | 0.33         | 0.34        | 0.59    |

<sup>\*</sup>Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

|                                             | 20        | 05      | Yield (tons/acre) |        |       |       |       |  |  |  |  |  |  |
|---------------------------------------------|-----------|---------|-------------------|--------|-------|-------|-------|--|--|--|--|--|--|
|                                             | Percen    | t Stand | 2004              |        | 2-yr  |       |       |  |  |  |  |  |  |
| Variety                                     | Apr 8     | Oct 28  | Total             | May 23 | Jun 9 | Total | Total |  |  |  |  |  |  |
| Commercial Varieties—Available for Farm Use |           |         |                   |        |       |       |       |  |  |  |  |  |  |
| CA Ladino                                   | 68        | 60      | 1.57              | 0.93   | 0.48  | 1.41  | 2.98* |  |  |  |  |  |  |
| Seminole                                    | 50        | 65      | 1.44              | 0.57   | 0.29  | 0.86  | 2.30* |  |  |  |  |  |  |
| Excel                                       | 9         | 63      | 1.55              | 0.35   | 0.25  | 0.60  | 2.15  |  |  |  |  |  |  |
| Regal                                       | 43        | 28      | 1.47              | 0.35   | 0.24  | 0.59  | 2.06  |  |  |  |  |  |  |
| Super Haifa                                 | 2         | 30      | 1.59              | 0.15   | 0.12  | 0.28  | 1.87  |  |  |  |  |  |  |
| Experimental                                | Varieties |         |                   |        |       |       |       |  |  |  |  |  |  |
| KY synthetic                                | 75        | 63      | 1.50              | 0.93   | 0.54  | 1.47  | 2.97* |  |  |  |  |  |  |
| RD19                                        | 58        | 55      | 1.44              | 0.90   | 0.38  | 1.27  | 2.72* |  |  |  |  |  |  |
| RD06                                        | 38        | 63      | 1.23              | 0.92   | 0.29  | 1.21  | 2.43* |  |  |  |  |  |  |
| GA-178                                      | 65        | 73      | 1.55              | 0.58   | 0.28  | 0.86  | 2.41* |  |  |  |  |  |  |
| Crusader                                    | 35        | 68      | 1.37              | 0.43   | 0.29  | 0.72  | 2.08  |  |  |  |  |  |  |
|                                             |           |         |                   |        |       |       |       |  |  |  |  |  |  |
| Mean                                        | 44        | 57      | 1.47              | 0.61   | 0.32  | 0.93  | 2.40  |  |  |  |  |  |  |
| CV,%                                        | 30        | 26      | 19.42             | 61.17  | 32.65 | 41.63 | 20.22 |  |  |  |  |  |  |
| LSD,0.05                                    | 19        | 21      | 0.41              | 0.54   | 0.15  | 0.56  | 0.70  |  |  |  |  |  |  |

|                                             | Seedling<br>Vigor <sup>1</sup><br>Jun 13, | Percent<br>Stand<br>Oct 6, | 2005 Yield (tons/acre) |        |         |       |  |  |  |  |  |  |  |
|---------------------------------------------|-------------------------------------------|----------------------------|------------------------|--------|---------|-------|--|--|--|--|--|--|--|
| Variety                                     | 2005                                      | 2005                       | Jun 27                 | Jul 29 | Sept 21 | Total |  |  |  |  |  |  |  |
| Commercial Varieties—Available for Farm Use |                                           |                            |                        |        |         |       |  |  |  |  |  |  |  |
| Will                                        | 4.5                                       | 98                         | 0.35                   | 0.78   | 0.64    | 1.77* |  |  |  |  |  |  |  |
| Crescendo                                   | 5.0                                       | 99                         | 0.32                   | 0.74   | 0.69    | 1.75* |  |  |  |  |  |  |  |
| Regal                                       | 4.5                                       | 99                         | 0.24                   | 0.72   | 0.63    | 1.59* |  |  |  |  |  |  |  |
| Colt                                        | 5.0                                       | 95                         | 0.35                   | 0.64   | 0.54    | 1.53* |  |  |  |  |  |  |  |
| Pinnacle                                    | 5.0                                       | 100                        | 0.32                   | 0.55   | 0.65    | 1.52* |  |  |  |  |  |  |  |
| Patriot                                     | 4.5                                       | 100                        | 0.14                   | 0.57   | 0.59    | 1.30  |  |  |  |  |  |  |  |
| Common                                      | 4.5                                       | 99                         | 0.18                   | 0.38   | 0.62    | 1.18  |  |  |  |  |  |  |  |
| Durana                                      | 3.8                                       | 99                         | 0.11                   | 0.46   | 0.52    | 1.10  |  |  |  |  |  |  |  |
| Alice                                       | 4.0                                       | 86                         | 0.17                   | 0.49   | 0.38    | 1.04  |  |  |  |  |  |  |  |
| Avoca                                       | 3.5                                       | 89                         | 0.14                   | 0.47   | 0.39    | 1.01  |  |  |  |  |  |  |  |
| Experimenta                                 | Varieties                                 |                            |                        |        |         |       |  |  |  |  |  |  |  |
| CW9701                                      | 5.0                                       | 100                        | 0.24                   | 0.63   | 0.70    | 1.58* |  |  |  |  |  |  |  |
| WC-1                                        | 4.8                                       | 99                         | 0.26                   | 0.62   | 0.64    | 1.52* |  |  |  |  |  |  |  |
| WC-2                                        | 4.8                                       | 100                        | 0.26                   | 0.55   | 0.59    | 1.40  |  |  |  |  |  |  |  |
| KY Synthetic                                | 3.5                                       | 89                         | 0.13                   | 0.43   | 0.40    | 0.95  |  |  |  |  |  |  |  |
|                                             |                                           |                            |                        |        |         |       |  |  |  |  |  |  |  |
| Mean                                        | 5.0                                       | 97                         | 0.23                   | 0.57   | 0.57    | 1.37  |  |  |  |  |  |  |  |
| CV,%                                        | 12.5                                      | 7                          | 40.30                  | 24.84  | 11.73   | 17.69 |  |  |  |  |  |  |  |
| LSD,0.05                                    | 0.8                                       | 9                          | 0.13                   | 0.20   | 0.10    | 0.35  |  |  |  |  |  |  |  |

<sup>\*</sup>Not significantly different from the highest value in the column, based on the 0.05 LSD.

1 Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

|                         |                           |                   |    | Lexi | ngton |    |      | Quicksand | Princeton |    |      |      | <b>Eden Shale</b> |    |
|-------------------------|---------------------------|-------------------|----|------|-------|----|------|-----------|-----------|----|------|------|-------------------|----|
|                         | Proprietor/KY             | 2003 <sup>1</sup> |    |      | 20    | 04 | 2005 | 2005      | 2003      |    | 2005 | 2003 |                   |    |
| Variety                 | Distributor               | 03 <sup>2</sup>   | 04 | 05   | 04    | 05 | 05   | 05        | 03        | 04 | 05   | 05   | 04                | 05 |
| <b>Commercial Varie</b> | ties—Available for Farm U | se                |    |      |       |    |      |           |           |    |      | •    |                   |    |
| AA117ER                 | ABI Alfalfa               |                   |    |      |       |    | *    | х         |           |    |      | Х    |                   |    |
| Cinnamon Plus           | FFR/Southern States       | Х                 | *  | Х    |       |    | *    | *         |           |    |      | х    |                   |    |
| Common A                | Public                    | Х                 | Х  | Х    |       |    | *    | *         | Х         | Х  | Х    | х    | Х                 | Х  |
| Common C                | Public                    |                   |    |      |       |    | х    | х         |           |    |      | х    |                   |    |
| Dominion                | Seed Research of Oregon   |                   |    |      |       |    | *    | *         |           |    |      | Х    |                   |    |
| Emarwan                 | Van Dyke Seed Co.         |                   |    |      | *     | *  |      |           |           |    |      |      |                   |    |
| FSG9601                 | Allied Seed, L.L.C.       |                   |    |      | *     | Х  |      |           |           |    |      |      |                   |    |
| Freedom!                | Barenbrug                 | Х                 | *  | Х    | *     | *  | *    | *         | *         | Х  | *    | *    | *                 | *  |
| GDLH                    | Public                    | Х                 | х  | Х    |       |    |      |           | *         | х  | х    |      | Х                 | х  |
| GDSG                    | Public                    | Х                 | х  | Х    |       |    |      |           | Х         | х  | х    |      | х                 | х  |
| GDQ                     | Public                    | Х                 | х  | Х    |       |    |      |           | *         | Х  | х    |      | Х                 | х  |
| Kenland, certified      | KY Agric. Exp. Station    | *                 | *  | *    | *     | *  | *    | *         | *         | х  | *    | Х    | Х                 | *  |
| Kenton (KNARS)          | KY Agr. Exp. Station      | Х                 | *  | Х    | *     | Х  | *    | *         | *         | х  | х    | х    | х                 | х  |
| Kenway (KVMRS)          | KY Agr. Exp. Station      |                   |    |      | Х     | *  | *    | *         |           |    |      | х    |                   |    |
| Red Gold Plus           | Turner Seed Co.           |                   |    |      | *     | х  |      |           |           |    |      |      |                   |    |
| Redland Max             | ABI Alfalfa               |                   |    |      | *     | *  |      |           |           |    |      |      |                   |    |
| Solid                   | Improved Forages Inc.     | Х                 | х  | Х    |       |    | *    | *         | *         | Х  | х    | х    | Х                 | х  |
| Starfire                | Ampac Seed Co.            |                   |    |      |       |    |      |           |           |    |      |      |                   |    |
| TripleTrust 350         | ABI Alfalfa               |                   |    |      |       |    | *    | *         |           |    |      | х    |                   |    |
| <b>Experimental Vai</b> | ieties                    | •                 |    | •    |       |    |      |           |           |    |      | •    |                   |    |
| CW10002                 | Cal/West Seeds            |                   |    |      | *     | *  |      |           |           |    |      |      |                   |    |
| Freedom! MR             | KY Agr. Exp. Station      | *                 | *  | *    | *     | *  | *    | *         | *         | Х  | *    | *    | *                 | *  |
| GAc1RC                  | Univ. of Georgia          |                   |    |      | Х     | Х  |      |           |           |    |      |      |                   |    |
| KY Low phenolic         | KY Agr. Exp. Station      | Х                 | *  | Х    | Х     | *  | *    | х         | *         | Х  | Х    | х    | *                 | Х  |
| KY Tetraploid           | KY Agr. Exp. Station      | *                 | *  | Х    | *     | *  | *    | х         | *         | *  | *    | Х    | Х                 | *  |
| RC9602                  | Allied Seed, L.L.C.       |                   |    |      |       |    | *    | *         |           |    |      | Х    |                   |    |
| RC9603                  | Allied Seed, L.L.C.       |                   |    |      |       |    | *    | *         |           |    |      | *    |                   |    |
| WVPB-RC-NT              | Smith Seed Services       |                   |    |      | *     | *  |      |           |           |    |      |      |                   |    |
| ZR0004R                 | ABI Alfalfa               |                   |    |      | *     | х  |      |           |           |    |      |      |                   |    |
| ZR0005R                 | ABI Alfalfa               |                   |    |      | *     | *  |      |           |           |    |      |      |                   |    |

Establishment year
 Harvest year
 Open boxes indicate the variety was not in the test.
 x in the box indicates the variety was in the test but yielded significantly less than the top variety in the test.
 \*Not significantly different from the top-ranked red clover variety in the test.

| Table 14. Performance of      | white clover varieties acro  | ss yea          | rs and le         | ocation | ıs.  |    |      |       |            |      |    |     |
|-------------------------------|------------------------------|-----------------|-------------------|---------|------|----|------|-------|------------|------|----|-----|
|                               |                              |                 | L                 | exingto | n    |    |      | Princ | Eden Shale |      |    |     |
|                               | Proprietor/KY<br>Distributor |                 | 2003 <sup>1</sup> |         | 2004 |    | 2003 |       |            | 2005 | 20 | 003 |
| Variety (Type)                |                              | 03 <sup>2</sup> | 04                | 05      | 04   | 05 | 03   | 04    | 05         | 05   | 04 | 05  |
| Commercial Varieties—Av       | vailable for Farm Use        |                 |                   | •       |      |    | •    |       | •          |      |    |     |
| Advantage (Ladino)            | Allied Seed, L.L.C.          | *               | *                 | *       |      |    |      |       |            |      |    |     |
| Alice                         | Barenbrug                    |                 |                   |         |      |    |      |       |            | х    |    |     |
| Avoca (Dutch)                 | DLF International Seeds      |                 |                   |         |      |    |      |       |            | х    |    |     |
| Barblanca                     | Barenbrug                    | Х               | х                 | *       |      |    |      |       |            |      |    |     |
| California Ladino             | Public                       |                 |                   |         | *    | *  | *    | *     | *          |      |    |     |
| Colt (Intermediate)           | Seed Research of Oregon      | Х               | х                 | *       |      |    |      |       |            | *    |    |     |
| Common (Dutch)                | Public                       |                 |                   |         |      |    |      |       |            | х    |    |     |
| Cresendo (Ladino)             | Cal/West Seeds               |                 |                   |         |      |    |      |       |            | *    |    |     |
| Durana (Dutch)                | Pennington                   | Х               | х                 | *       |      |    | х    | *     | х          | х    | *  | *   |
| Excel (Ladino)                | Allied Seed, L.L.C.          |                 |                   |         | *    | х  |      |       |            |      |    |     |
| Patriot (Intermediate)        | Pennington                   | Х               | *                 | *       |      |    | *    | *     | *          | х    | *  | *   |
| Pinnacle (Ladino)             | Allied Seed, L.L.C.          |                 |                   |         |      |    |      |       |            | *    |    |     |
| Regal (Ladino)                | Public                       | Х               | *                 | *       | *    | х  | *    | *     | *          | *    | *  | *   |
| Seminole (Ladino)             | Saddle Butte Ag. Inc.        |                 |                   |         | *    | *  |      |       |            |      |    |     |
| Super Haifa (Intermediate)    | Allied Seed, L.L.C.          |                 |                   |         | *    | х  |      |       |            |      |    |     |
| Will (Ladino)                 | Allied Seed, L.L.C.          |                 |                   |         |      |    |      |       |            | *    |    |     |
| <b>Experimental Varieties</b> |                              |                 |                   |         |      |    |      |       | •          |      |    |     |
| Crusader                      | Barenbrug                    |                 |                   |         | *    | х  |      |       |            |      |    |     |
| CW 7000                       | Cal/West Seeds               | *               | *                 |         |      |    |      |       |            |      |    |     |
| CW 9701                       | Cal/West Seeds               |                 |                   |         |      |    |      |       |            | *    |    |     |
| GA-178                        | Univ. of Georgia             |                 |                   |         | *    | *  |      |       |            |      |    |     |
| KY Synthetic (Dutch)          | KY Agr. Exp. Station         |                 |                   |         | *    | *  |      |       |            | х    |    |     |
| RD06 (Intermediate)           | Allied Seed, L.L.C.          |                 |                   |         | *    | *  |      |       |            |      |    |     |
| RD19 (Ladino)                 | Allied Seed, L.L.C.          |                 |                   |         | *    | *  |      |       |            |      |    |     |
| WC-1                          | Oregon Seeds, Inc.           |                 |                   |         |      |    |      |       |            | *    |    |     |
| WC-2                          | Oregon Seeds, Inc.           |                 |                   |         |      |    |      |       |            | х    |    |     |

Establishment year
 Harvest year



Mention or display of a trademark, proprietary product, or firm in text or figures does not constitute an endorsement and does not imply approval to the exclusion of other suitable products or firms.

Open boxes indicate the variety was not in the test.
x in the box indicates the variety was in the test but yielded significantly less than the top variety in the test.
\*Not significantly different from the top-ranked white clover variety in the test.