2011 Annual and Perennial Ryegrass and Festulolium Report

UNIVERSITY OF KENTUCKY College of Agriculture

G.L. Olson, S.R. Smith, T.D. Phillips, and G.D. Lacefield, Plant and Soil Sciences

Introduction

Annual ryegrass (*Lolium multiflorum*) and perennial ryegrass (*Lolium perenne*) are high-quality, productive cool-season grasses used in Kentucky. Both have exceptionally high seedling vigor and are highly palatable to livestock.

Annual ryegrasses are increasing in use across Kentucky as more winter-hardy varieties are released and promoted. Annual ryegrass is productive for three to four months and is used primarily for late fall and early to late spring pasture. Winter growth occurs only during mild winters. There is also increased interest in this crop for high quality baleage. There are two main types of annual ryegrasses. The most commonly used type in Kentucky is Italian ryegrass. The other is sometimes referred to as Westerwolds ryegrass. The Westerwolds type is a true annual, in that stands seeded in the spring produce seedheads that summer, and little regrowth occurs after seedheads are produced. Westerwolds ryegrass varieties are commonly used in the lower South (Florida to Texas) because they can be seeded in the fall and will survive the winter. In Kentucky, winter survival can be an issue for Westerwolds varieties, so before planting one of these varieties, review winter survival results for Kentucky.

Italian ryegrass is native to Southern Europe and is not a true annual. In Kentucky most varieties behave as biennials or short-lived perennials, depending on environmental conditions. Italian ryegrasses provide high yields of quality forage and show quick regrowth. If planted in the spring, there will be no or few seedheads that summer (vernalization is required). Spring planting of Italian ryegrass is common in northern states (e.g., Wisconsin, Minnesota, etc.) for summer grazing, but most current variet-

Table 1	. Temp	erature	and rai	nfall at l	Lexingt	on, Ker	tucky i	n 2009,	2010 aı	nd 2011		
		20	09			20	10			20	11 ²	
	Tei	np.	Raiı	nfall	Ter	np.	Rair	nfall	Ter	np.	Rai	nfall
	°F	DEP ¹	IN	DEP	°F	DEP	IN	DEP	°F	DEP	IN	DEP
JAN	28	-3	2.45	-0.41	29	-2	2.40	-0.46	29	-2	2.10	-0.76
FEB	38	+3	2.86	-0.35	29	-6	1.38	-1.83	39	+4	6.34	+3.13
MAR	48	+4	2.19	-2.21	47	+3	1.05	-3.35	47	+3	4.76	+0.36
APR	55	0	4.48	+0.60	59	+4	2.74	-1.14	58	+3	12.36	+8.48
MAY	64	0	5.05	+0.58	67	+3	7.84	+3.37	64	0	6.72	+2.25
JUN	74	+2	5.41	-1.75	76	+4	4.61	+0.95	74	+2	2.61	-1.05
JUL	71	-5	5.89	+0.89	78	+2	5.49	+0.49	80	+4	6.29	1.29
AUG	73	-2	5.38	+1.45	78	+3	1.54	-2.39	75	0	2.89	-1.04
SEP	68	0	5.37	+2.17	71	+3	1.14	-2.06	66	-2	5.52	+2.32
OCT	54	-3	4.83	+2.26	59	+2	1.22	-1.35	55	-2	4.10	+1.53
NOV	49	+4	0.94	-2.45	47	+2	4.58	+1.19				
DEC	36	0	3.86	-0.12	28	-8	2.15	-1.93				
Total			48.71	+4.16			36.14	-8.41			53.69	+16.51
¹ DEP i	s depart	ture fron	n the lor	ng-term	average	2.						

² 2011 data is for the ten months through October

ies do not dependably survive Kentucky summers. Italian ryegrasses are almost always planted late summer to early fall in Kentucky and typically provide forage production into early summer.

Both forage and turf types of annual ryegrasses are available. Turf types are low growing and have poor yield. Turf types are also infected with a fungal endophyte that lives inside the plant, protecting it from insect attack but producing a toxin that reduces performance of grazing animals. All turf types are infected. Plant only forage-type varieties for grazing, hay, or silage.

Perennial ryegrass can be used as a short-lived hay or pasture plant and has growth characteristics similar to tall fescue. It is more persistent than Italian ryegrass but less persistent than other cool-season grass species. It tillers more profusely but is lower growing than Italian ryegrass and will not form a seedhead in the seeding year. There are both diploid (two sets of chromosomes) and tetraploid (four sets of chromosomes) varieties of perennial ryegrass. Tetraploids have larger tillers and seedheads and wider leaves. Tetraploid types tend to be taller and less dense than diploid types even in early stages of regrowth. Diploid types produce more tillers, have better stand persistence, and are more tolerant to heavy grazing.

Intermediate or hybrid ryegrass (*Lo-lium hybridum, Hausska*) is the result of a cross between Italian ryegrass and perennial ryegrass. It is not as winter hardy as perennial ryegrass, but it is higher yielding. It is also more persistent and winter hardy than Italian ryegrass. Its uses would be similar to those of perennial ryegrass.

Festuloliums are hybrids between various fescues and ryegrasses with higher quality than tall fescue and improved stand survival over perennial ryegrass. Their use in Kentucky is still limited since they do not survive as long as tall fescue.

This report provides current yield data on annual and perennial ryegrass varieties in trials in Kentucky as well as guidelines for selecting varieties. Tables 14, 15, and 16 show summaries of all annual and perennial ryegrass and festulolium varieties tested in Kentucky for the last 10-plus years. The UK Forage Extension web site at www.uky.edu/Ag/

Forage contains electronic versions of all forage variety testing reports from Kentucky and surrounding states and a large number of other forage publications.

Important Selection Considerations

Local Adaptation and Seasonal Yield. The variety should be adapted to Kentucky as indicated by good winter survival and good performance across years and locations in replicated yield trials, such as those presented in this publication. Choose high-yielding varieties, but choose varieties that are productive during the desired season of use.

Seed Quality. Buy premium-quality seed that is high in germination, high in purity, and free from weed seed. Buy certified seed or proprietary seed of an improved variety. An improved variety is one that has performed well in independent trials. Other information on the label will include the test date (which must be within the previous nine months), the level of germination, and percentage of other crop and weed seed. Order seed well in advance of planting time to assure that it will be available when needed.

Important: When seeding perennial ryegrasses for horse pasture (of any kind), insist on an endophyte-free variety. The endophyte level will be stated on a green tag on every bag of seed. Most forage types of perennial ryegrass are endophyte free, and most new turf types are infected. This endophyte is similar to the endophyte of tall fescue and produces alkaloids that are toxic to cattle and horses.

Description of the Tests

Data from eight studies are reported. Annual ryegrass tests were established in the fall of 2008, 2009, and 2010 at Lexington. Perennial ryegrass (with festulolium) tests were established at Lexington in the fall of 2008 and 2009. Perennial ryegrass and festulolium varieties were established in separate tests at Lexington in the fall of 2010. The soil at Lexington is a well-drained silt loam (Maury) and is well suited for ryegrass production.

Seedings were made at the rate of 25 lb/A into a prepared seedbed with a disk drill. Plots were 5 by 20 feet in a randomized complete block design with four replications with a harvested plot area

Table forage	Descriptive scheme for the stage arasses	es of development on perennial
Code	Description	Remarks
	Leaf development	
11	First leaf unfolded	Applicable to regrowth of established (plants) and to primary growth of seedlings.
12	2 leaves unfolded	Further subdivision by means of
13	3 leaves unfolded	leaf development index (see text).
•		
19	9 or more leaves unfolded	
	Sheath elongation	
20	No elongated sheath	Denotes first phase of new spring
21	1 elongated sheath	growth after overwintering.
22	2 elongated sheaths	This character is used instead of
23	3 elongated sheaths	in established stands.
•	• • • • •	
29	9 or more elongated sheaths	
	Tillering (alternative to sheath elong	ation)
21	Main shoot only	Applicable to primary growth
22	Main shoot and 1 tiller	of seedlingsor to single tiller
23	Main shoot and 2 tillers	transplants.
24	Main shoot and 3 tillers	
•	• • • • •	
29	Main shoot and 9 or more tillers	
	Stem elongation	
31	First node palpable	More precisely an accumulation
32	Second node palpable	of nodes. Fertile and sterile tillers
33	Third node palpable	distinguishable.
34	Fourth node palpable	
35	Fifth node palpable	
37	Flag leaf just visible	
39	Flag leaf ligule/collar just visible	
	Booting	
45	Boot swollen	
	Inflorescence emergence	
50	Upper 1 to 2 cm of inflorescence visible	
52	1/4 of inflorescence emerged	
54	1/2 of inflorescence emerged	
56	34 of inflorescence emerged	
58	Base of inflorescence just visible	
	Anthesis	
60	Preanthesis	Inflorescence-bearing internode is visible. No anthers are visible.
62	Beginning of anthesis	First anthers appear.
64	Maximum anthesis	Maximum pollen shedding.
66	End of anthesis	No more pollen shedding.
	Seed ripening	-
75	Endosperm milky	Inflorescence green
85	Endosperm soft doughy	No seeds loosening when inflorescenceis hit on palm.
87	Endosperm hard doughy	Inflorescence losing chlorophyll; a few seeds loosening when inflorescence hit on palm.
91	Endosperm hard	Inflorescence-bearing internode losing chlorophyll; seeds loosening in quantity when inflorescence hit on palm.
93	Endosperm hard and dry	Final stage of seed development; most seeds shed.
Smith,	J. Allan, and Virgil W. Hayes. 1981. p	416-418. 14th International

Table 3. Dry matter yiel Kentucky.	ds, seedling vigor, mat	urity and stan	d persiste	ence of a	annual ry	egras va	rieties so	own Sept	ember 1	1, 2008 a	at Lexing	ton,
		Soodling	Matu	ritv ²	Percen	t Stand			Yield (to	ons/acre)		
		Vigor ¹	20	09	2008	2009 ³	2008		20	09		
Variety	Туре	Oct 21, 2008	May 10	Jun 5	Oct 21	Apr 6	Dec 22	May 10	Jun 5	Jun 29	Aug 7	Total
Commercial Varieties-A	vailable for Farm Use											
Acrobat	-	3.0	49.8	53.0	100	98	0.06	1.96	1.02	1.02	0.88	4.94*
Marshall	Westerwold diploid	4.3	54.0	55.0	98	99	0.21	2.01	0.96	0.15	0.09	3.42
Bruiser	Westerwold diploid	4.8	54.7	54.7	98	73	0.25	1.25	0.58	0.12	0.05	2.24
Jackson	Westerwold diploid	4.3	54.7	55.3	98	74	0.14	1.33	0.44	0.07	0.05	2.02
Flying A	Westerwold diploid	4.1	54.0	59.0	98	49	0.19	1.03	0.61	0.13	0.06	2.02
Tam 90	Italian diploid	3.3	54.5	56.5	100	49	0.07	1.05	0.32	0.06	0.15	1.66
ТАМТВО	Italian tetraploid	3.5	54.0	57.0	97	21	0.20	0.85	0.39	0.12	0.05	1.61
TetraPro	Italian tetraploid	4.0	56.0	56.0	97	14	0.14	0.61	0.34	0.09	0.19	1.36
Feast II	Italian tetraploid	3.5	45.0	56.0	99	2	0.04	0.24	0.20	0.20	0.51	1.19
DH-3	Westerwold diploid	4.3	55.5	60.7	100	13	0.14	0.47	0.26	0.01	0.04	0.92
Gulf	Westerwold diploid	3.8	56.0	60.0	100	9	0.25	0.29	0.19	0.01	0.14	0.89
Experimental Varieties												
IS-LMT 6	Italian tetraploid	3.3	47.5	52.8	97	87	0.13	2.02	1.12	1.11	0.86	5.24*
IS-LMT 5	Italian tetraploid	3.6	45.0	55.0	98	95	0.07	2.14	0.84	0.90	0.74	4.68*
IS-LMD 7	Italian diploid	3.5	45.0	51.5	100	100	0.07	1.84	0.75	0.68	0.88	4.23*
FL/NE2006 (misc2X)LRLT	Westerwold diploid	2.8	52.5	54.0	98	98	0.11	2.14	0.78	0.15	0.09	3.27
ME 4	Westerwold diploid	3.5	53.0	55.5	99	100	0.13	1.69	0.91	0.13	0.10	2.97
PSG 29 BF06	Italian tetraploid	2.5	45.0	52.0	96	61	0.05	1.26	0.46	0.59	0.45	2.81
ME 94	Westerwold diploid	3.0	52.5	55.5	98	98	0.05	1.77	0.84	0.11	0.04	2.81
07-WW	Westerwold diploid	4.0	54.0	55.0	99	85	0.12	1.67	0.55	0.18	0.14	2.66
AM-4N-06	Westerwold tetraploid	4.0	55.3	57.3	96	5	0.17	0.39	0.27	0.09	0.15	1.07
TXR 2006-T22	Italian tetraploid	3.0	50.3	60.0	96	1	0.07	0.19	0.30	0.05	0.04	0.64
Mean		3.6	51.7	55.5	98.1	58.4	0.13	1.25	0.58	0.28	0.27	2.51
CV,%		21.1	3.5	3.9	2.7	35.7	94.59	36.58	42.24	50.31	65.82	30.49
LSD,0.05		1.1	2.8	3.5	3.7	29.5	0.17	0.64	0.35	0.20	0.25	1.08
¹ Vigor score based on sc	ale of 1 to 5 with 5 being	n the most viao	rous seed	ling aro	wth							

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

Severe winterkill significantly reduced percent stand and spring yield.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

of 5 by 15 feet. Nitrogen was top-dressed at 60 lb/A of actual N in March, May, and August. The tests were harvested using a sickle-type forage plot harvester. The first cutting was harvested at each location when all ryegrass varieties had reached at least the boot stage. Fresh weight samples were taken at each harvest to calculate dry matter production. Management practices for these tests regarding establishment, fertility, weed control, and harvest timing were in accordance with University of Kentucky recommendations.

Table 4. Dry matter yields, seedling vigor, maturity and stand persistence of annual ryegrass varieties sown September 30, 2009 at Lexington,

кепциску.												
		Seedling Vigor ¹	Mate 20	urity ²)10	Pe	rcent Sta 2010	nd		Yiel	d (tons/a 2010	icre)	
Variety	Туре	Oct 30, 2009	Apr 20	May 24	Oct 30	Apr 13	Jul 20	Apr 20	May 24	Jun 22	Jul 20	Total
Commercial Varieties -	Available for Farm Use											
Feast II	Italian tetraploid	3.5	33.0	54.0	95	100	97	1.58	1.76	1.13	0.22	4.69*
Bruiser	Westerwold diploid	4.8	36.5	54.5	100	100	2	2.07	1.54	0.74	0.00	4.35*
Jackson	Westerwold diploid	4.0	36.0	55.5	99	100	2	1.89	1.58	0.71	0.00	4.18
Marshall	Westerwold diploid	4.8	34.3	55.5	100	100	2	1.89	1.55	0.72	0.00	4.15
Gulf	Westerwold diploid	5.0	39.3	56.5	100	100	0	1.85	1.41	0.38	0.00	3.63
Experimental Varieties	i											
ME4	Westerwold diploid	3.8	33.3	54.0	96	100	4	1.72	1.67	0.83	0.00	4.21
ME-94	Westerwold diploid	4.8	33.5	55.0	99	100	4	1.83	1.57	0.73	0.00	4.14
FLx2003(New3)LRCT	-	4.4	33.3	56.0	100	100	3	1.79	1.61	0.70	0.00	4.10
Mean		4.4	34.9	55.1	98.6	100.0	14.3	1.83	1.58	0.74	0.03	4.18
CV,%		11.9	10.9	2.2	1.6	0.0	18.6	9.55	9.70	15.95	33.96	7.04
LSD,0.05		0.8	5.6	1.7	2.4	0.0	3.9	0.26	0.23	0.17	0.02	0.43

Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth

Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

 $^{
m t}$ Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 5. Dry m	latter yields, seedling vi	gor, maturity ai	nd stan	d persist	tence of	annual	ryegras	s varieti	es sowr	Septen	nber 6,	2010 a	t Lexing	ton, Ke	ntucky.			
				Matu	rity ²			Pero	ent Sta	pu				Yield	(tons/a	icre)		
		Seedling		20	11				50,	-					2011			
Variety	Type	Vigor ¹ Oct 14, 2010	Apr 21	May 19	nn 7	Jun 28	2010 Oct 14	Jan 5	Mar 16	ا ^{يا} 1	Aug 23	Jan 5	Apr 21	May 19	۹۳	Jun 28	Jul 22	Total
Commercial Va	Interies-Available for Far	rm Use						-		-								
Barmultra II	Italian	3.0	33.3	41.8	53.5	62.0	66	100	100	100	83	0.16	1.99	1.36	1.01	0.38	0.13	5.03*
GR-AS10	Italian	4.0	32.5	39.0	52.0	62.0	100	100	100	100	58	0.20	1.76	1.12	0.80	0.25	0.11	4.25
Attain	Westerwold diploid	3.6	33.0	49.8	59.0	62.0	100	100	100	66	0	0.36	1.95	1.07	0.63	0.17	0.00	4.18
Feast II	Westerwold tetraploid	4.8	32.0	39.0	52.0	62.0	100	100	98	66	91	0.20	1.49	1.12	0.86	0.31	0.14	4.11
Fox	Italian diploid	4.3	32.8	43.8	53.5	62.0	100	100	66	66	71	0.18	1.66	0.99	0.81	0.31	0.12	4.07
Winterhawk	Westerwold diploid	3.4	33.3	49.8	57.5	62.0	100	100	100	100	0	0.28	1.91	0.96	0.56	0.22	0.01	3.93
TAMTBO	Italian tertraploid	3.8	33.0	47.0	58.0	62.0	100	100	100	100	0	0.22	1.88	0.90	0.65	0.16	0.01	3.82
Marshall	Westerwold diploid	4.3	33.0	51.3	56.5	62.0	100	100	100	100	0	0.39	1.64	0.99	0.58	0.17	0.00	3.77
Bruiser	Westerwold diploid	4.3	33.5	48.8	60.5	62.0	100	100	100	100	m	0.40	1.85	0.87	0.49	0.14	0.00	3.76
Jackson	Westerwold diploid	3.3	33.3	46.5	58.0	62.0	100	100	100	100	0	0.42	1.91	0.80	0.49	0.11	0.01	3.74
Big Boss	Westerwold tetraploid	3.8	33.8	55.0	62.0	62.0	66	100	66	66	0	0.29	1.61	0.98	0.68	0.12	0.00	3.68
Ed	Westerwold diploid	2.5	33.8	50.3	61.0	62.0	66	100	100	100	0	0.22	1.92	0.87	0.50	0.12	0.00	3.62
Fria	Westerwold diploid	3.1	33.0	46.0	59.0	62.0	100	100	100	66	5	0.31	1.85	0.84	0.46	0.12	0.00	3.58
Brangus	Italian diploid	4.0	32.3	55.5	60.5	62.0	100	100	66	66	0	0.29	1.42	1.02	0.57	0.24	0.01	3.56
Big Daddy	Westerwold tetraploid	3.5	33.0	56.0	61.0	62.0	100	100	98	98	0	0.23	1.32	0.99	0.56	0.14	0.02	3.25
Verdure	Westerwold tetraploid	4.3	32.5	56.0	62.0	62.0	100	100	66	66	1	0.32	1.31	0.93	0.54	0.12	0.01	3.23
KB Royal	Italian diploid	4.3	32.8	54.0	59.0	62.0	100	100	100	100	1	0.35	1.31	0.86	0.47	0.12	0.01	3.12
Gulf	Westerwold diploid	4.1	32.8	55.5	61.0	62.0	100	100	66	100	0	0.31	1.34	0.83	0.34	0.10	0.00	2.93
HS-1	Italian diploid	4.6	32.0	56.0	60.0	62.0	100	100	97	96	0	0.25	1.13	0.86	0.41	0.07	0.00	2.72
Experimental \	Varieties																	
BAR LMF9881	Ι	3.0	33.5	41.8	54.0	62.0	100	100	100	100	48	0.20	2.17	1.20	0.92	0.31	0.12	4.91*
BAR LMF9876	I	2.6	33.0	43.8	56.0	62.0	98	100	100	100	13	0.16	2.05	1.09	0.75	0.26	0.08	4.39
PPG-LMT103	Italian tetraploid	1.6	31.8	41.8	52.0	62.0	99	100	100	100	100	0.19	1.54	1.32	0.79	0.33	0.12	4.28
BAR LMF9740	I	3.4	33.5	43.5	56.0	62.0	100	100	98	98	9	0.20	1.75	1.13	0.81	0.25	0.02	4.16
B-7.1366	Italian diploid	3.5	33.0	42.0	57.0	62.0	100	100	66	100	0	0.25	2.03	0.91	0.68	0.15	0.02	4.04
PPG-LMT102	Italian diploid	2.0	33.8	49.3	56.0	62.0	98	100	100	100	0	0.17	1.70	0.89	0.58	0.17	0.01	3.51
Mean		3.6	33.0	48.1	57.5	62.0	99.5	100.0	99.4	99.2	19.1	0.26	1.70	1.00	0.64	0.19	0.04	3.83
CV,%		22.1	1.8	8.8	3.3	0.0	0.9	0.0	1.2	1.2	49.3	42.91	14.16	11.56	14.01	26.30	60.61	9.01
LSD,0.05		1.1	0.8	6.0	2.7	0.0	1.3	0.0	1.8	1.8	12.5	0.16	0.34	0.16	0.13	0.07	0.03	0.49
¹ Vigor score bi ² Maturity ratin	ased on scale of 1 to 5 wit a scale: 37=flag leaf emer	th 5 being the mo	ost vigo swollen	rous see	dling gro	of inflore	escencee	mergen	ce, 58=c	omplete	emera	ence of i	nfloresce	ence, 62 ⁻	=beainn	ina of po	ollen she	d. See
Table 2 for co	mplete scale.				n			'n		<u></u>	n				n	ב ה		
* Not significan	tly different from the high	hest numerical va	alue in t	he colun	nn, base	d on the	0.05 LSD	Ċ.										

Table 6. Dry matter yields, s	edling vigor, maturity and stand p	ersistence of annual ryegrass vai	ieties sown September 24,
2010 at Lexington, Kentucky	•		-

			Ν	/laturity	2	Per	cent Sta	and	١	rield (to	ns/acre)
		Seedling		2011			20	11		20	11	
Variety	Туре	Vigor ¹ Oct 27, 2010	May 4	Jun 3	Jun 22	2010 Oct 27	Mar 16	Jul 13	May 5	Jun 3	Jun 22	Total
Commercial	Varieties-Available for F	arm Use										
Jackson	Westerwold diploid	3.8	54.0	56.3	60.0	100	100	100	1.53	0.78	0.16	2.47*
Marshall	Westerwold diploid	3.8	45.0	57.8	60.0	100	100	100	1.37	0.89	0.18	2.45*
Big Daddy	Westerwold tetraploid	4.0	54.0	59.5	60.0	100	100	100	1.52	0.77	0.12	2.41*
Nelson	Westerwold tetraploid	2.8	49.0	57.8	60.0	100	100	100	1.15	0.78	0.17	2.10
Experiment	al Varieties											
ME4	Westerwold diploid	2.5	46.8	57.0	60.0	100	100	100	1.56	0.90	0.16	2.63*
ME-94	Westerwold diploid	3.0	53.5	57.3	60.0	100	100	100	1.35	0.78	0.15	2.28*
	· · ·											
Mean		3.3	50.4	57.6	60.0	100.0	100.0	100.0	1.41	0.82	0.16	2.39
CV,%		20.4	5.3	1.9	0.0	0.0	0.0	0.0	19.15	9.20	24.74	13.50
LSD,0.05		1.0	4.0	1.6	0.0	0.0	0.0	0.0	0.41	0.11	0.06	0.49
¹ Vigor score	based on scale of 1 to 5 w	ith 5 being the	most vic		edling	arowth						

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence

of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Results and Discussion

Weather data for Lexington are presented in Table 1.

Ratings for maturity (see Table 2 for maturity scale) and dry matter yields (tons/A) are reported in Tables 3 through 10. Yields are given by cutting date for 2011 and as total annual production. Stated yields are adjusted for percent

weeds; therefore, the tonnage given is for crop only. Varieties are listed by total yield in descending order. Experimental varieties, listed separately at the bottom of the tables, are not available commercially.

In most years, annual ryegrasses can be expected to die or become unproductive after mid-June in their first summer. Unlike annual ryegrasses, perennials should be productive under Kentucky conditions for an average of two to three growing seasons.

The perennial ryegrass tests contained several festuloliums that are hybrids of meadow fescue and perennial ryegrass and have some of the characteristics of both. The festuloliums were in fescue trials from 1999 to 2005.

sown September	11, 2008 a	nt Lexin	igton, l	Kentuc	ky.					,	- j	,		,			,	
	Soodling	N	laturit	y ²			Per	cent St	and					Yie	ld (ton	s/acre)		
	Vigor ¹	2009	2010	2011	2008	20	09	20	10	20	11				20)11		
	Oct 21,	May	May	May	Oct	Apr	Oct	Apr	Oct	Apr	Oct	2009	2010	May	Jun	Oct		3-year
Variety	2008	21	12	17	21	7	30	13	15	14	27	Total	Total	17	8	21	Total	Total
Commercial Varie	eties-Availa	able fo	r Farm	Use														

Table 7. Dry mat sown September	ter yields, 11, 2008 a	seedling vigor, matu t Lexington, Kentuck	rity and stand persistence of perennial ryegrass	, festulolium (FL) and tall fescue (TF) varieties
		Mar 4	Democrat Chernel	

	Seedling	IV	atunty	/-			Per	cent St	anu					ne	u (tons	acre)		
	Vigor ¹	2009	2010	2011	2008	20	09	20	10	20	11				20	011		
Variety	Oct 21, 2008	May 21	May 12	May 17	Oct 21	Apr 7	Oct 30	Apr 13	Oct 15	Apr 14	Oct 27	2009 Total	2010 Total	May 17	Jun 8	Oct 21	Total	3-year Total
Commercial Varie	eties-Avail	able fo	r Farm	Use														
Spring Green (FL)	4.3	57.0	52.0	50.8	100	100	98	99	99	99	96	5.78	2.36	0.82	0.27	0.49	1.57	9.71*
Boost	3.5	55.5	53.5	43.3	99	100	99	100	99	98	95	5.37	2.70	0.73	0.32	0.43	1.48	9.55*
Ortet	3.9	56.0	52.5	50.3	97	100	98	98	98	93	93	5.05	2.37	0.68	0.16	0.43	1.27	8.68*
Duo (FL)	5.0	59.0	53.0	48.8	100	100	89	87	86	83	75	4.99	2.38	0.56	0.16	0.28	1.00	8.37
Power	3.8	55.0	51.5	40.0	100	100	100	100	100	96	96	4.36	2.05	0.46	0.27	0.73	1.46	7.87
Sweet Tart (FL)	4.8	57.0	54.5	53.5	100	100	98	98	98	89	90	4.41	1.91	0.51	0.18	0.44	1.13	7.46
Calibra	3.8	52.8	50.5	34.3	100	100	100	100	100	100	97	4.07	1.98	0.56	0.30	0.42	1.28	7.33
Linn	3.5	58.5	57.5	57.5	99	100	100	100	100	96	85	3.38	2.11	0.45	0.14	0.31	0.91	6.40
Herbal	3.1	47.8	33.0	32.0	100	100	100	98	98	98	99	3.42	1.25	0.42	0.21	0.59	1.21	5.89
Experimental Vai	rieties																	
RAD-CPS211	3.8	55.5	50.0	41.3	99	100	98	98	98	87	86	5.63	2.43	0.48	0.35	0.44	1.28	9.34*
AGRFA 174 (TF)	1.8	58.0	58.0	58.0	98	99	100	100	100	100	100	4.10	2.79	1.22	0.32	0.83	2.37	9.26*
PSG 47 MOL	4.0	56.0	51.5	43.8	78	100	98	100	100	71	79	5.03	2.34	0.34	0.30	0.48	1.13	8.50
PSG AM 108	4.0	56.0	54.5	43.3	100	100	99	100	100	100	99	4.85	2.25	0.56	0.21	0.42	1.20	8.30
KFA 605 (TF)	1.8	57.0	56.0	56.5	98	99	100	99	100	100	100	3.69	2.11	1.01	0.25	0.89	2.15	7.95
WFLS (FL)	5.0	57.0	55.0	52.0	100	73	26	54	39	44	19	3.97	1.93	0.13	0.17	0.07	0.38	6.28
Mean	3.7	55.9	52.2	46.7	97.7	98.0	93.4	95.2	94.3	90.1	87.1	4.54	2.20	0.60	0.24	0.48	1.32	8.06
CV,%	12.8	4.5	2.0	11.6	12.1	7.2	3.9	5.5	11.6	14.2	8.1	12.71	13.73	25.40	26.75	23.06	15.85	9.93
LSD,0.05	0.7	3.6	1.5	8.5	16.8	10.1	5.2	7.5	15.6	18.2	10.0	0.82	0.43	0.22	0.09	0.16	0.30	1.14
1																		

Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 8. Dry matter varieties sown Sei	er yields, seedl otember 11, 20	ing vig 09 at L	or, mat	turity a on. Ker	nd star itucky.	nd pers	istence	e of per	ennial	ryegra	ss and	festulo	lium (FL))
		Matu	urity ²		Per	cent St	and				Yield (tons/ac	re)	
	Seedling	2010	2011	2009	20	10	20	11	2010		2	011	-	
Variety	Vigor ¹ Oct 13, 2009	May 5	May 17	Oct 13	Apr 13	Oct 18	Mar 29	Oct 27	Total	May 19	Jun 17	Oct 21	Total	2-year Total
Commercial Varie	ties-Available f	or Farr	n Use											
Spring Green (FL)	3.4	54.5	55.0	99	100	99	77	99	3.14	1.75	0.39	0.65	2.79	5.94*
Duo (FL)	4.5	58.0	55.0	100	100	94	94	83	3.54	1.45	0.42	0.41	2.28	5.82*
Boost	3.1	49.0	48.5	99	100	100	100	100	2.96	1.59	0.39	0.63	2.61	5.57*
Impressario	2.5	50.5	55.0	97	100	100	99	98	2.54	1.55	0.34	0.69	2.58	5.12*
Calibra	3.1	39.0	38.3	100	100	100	99	97	2.34	1.53	0.49	0.69	2.70	5.04
Power	3.3	46.5	53.0	100	100	100	100	100	2.31	1.56	0.33	0.62	2.51	4.83
Tonga	3.5	55.0	55.5	99	100	100	98	96	2.62	1.42	0.26	0.51	2.19	4.80
Lactal	2.6	42.0	43.0	100	100	99	98	97	2.21	1.35	0.49	0.68	2.52	4.72
Linn	2.8	56.0	58.0	99	100	99	98	78	2.60	1.47	0.17	0.29	1.93	4.54
Orantas	2.6	39.0	33.8	100	100	100	100	84	1.97	0.97	0.38	0.45	1.80	3.77
Granddaddy	2.8	53.5	54.5	100	100	100	100	98	2.37	0.80	0.13	0.11	1.04	3.41
Experimental Vari	eties													
RAD-ERP214	2.3	55.0	58.0	98	100	100	100	91	2.43	1.71	0.13	0.37	2.22	4.64
Mean	3.0	49.8	50.6	99.1	100.0	99.1	96.8	93.2	2.59	1.43	0.33	0.51	2.27	4.85
CV,%	20.2	5.6	8.3	1.8	0.0	1.0	13.3	13.5	11.20	23.84	24.90	20.81	18.63	12.79
LSD,0.05	0.9	4.0	6.1	2.6	0.0	1.4	18.5	18.1	0.42	0.49	0.12	0.15	0.61	0.89
¹ Vigor score based	d on scale of 1 to	5 with	5 bein	g the m	ost vigo	orous se	eedling	growth	۱.					

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Statistical analyses were performed on all data (including experimentals) to determine if the apparent differences are truly due to varietal differences or just due to chance. Varieties not significantly different from the top variety in the column are marked with one asterisk (*). To determine if two varieties are truly different, compare the difference between them to the Least Significant Difference (LSD) at the bottom of the column. If the difference is equal to or greater than the LSD, the varieties are truly different when grown under the conditions at the given locations. The Coefficient of Variation (CV) is a measure of the variability of the data and is included for each column of means. Low variability is desirable; increased variability within a study results in higher CVs and larger LSDs.

Tables 11, 12, and 13 summarize information about distributors and yield performance for all annual and perennial ryegrass and festulolium varieties currently included in tests discussed in this report. Varieties are listed in alphabetical order by species, with the experimental varieties at the bottom. Remember that experimental varieties are not available for farm use; commercial varieties can be

ryegrass vari	eties sown Sep	tember 7, 20	010 at Le	exingtor	n, Kentud	:ky.			
			Per	cent Sta	and		Yield (to	ns/acre)	
	Seedlina	Maturitv ²		20	11		20	11	
	Vigor ¹	2011	2010	Mar		May			
Variety	Oct 14, 2010	May 12	Oct 14	16	Nov 7	12	Jun 17	Nov 1	Total
Commercial	Varieties-Availa	able for Farm	n Use		·		r		
Boost	4.0	57.0	100	99	99	2.31	1.07	0.89	4.27*
Polim	3.6	37.8	100	100	100	1.30	1.12	0.93	3.35*
Power	2.4	53.0	99	99	100	1.24	0.89	0.93	3.06
Granddaddy	1.9	54.5	95	98	99	1.48	0.66	0.77	2.91
Linn	2.1	58.0	99	100	100	1.71	0.55	0.58	2.85
BG34	2.5	43.5	100	100	100	1.17	0.85	0.69	2.71
Calibra	2.2	37.2	97	95	99	0.97	0.86	0.52	2.35
Experimenta	l Varieties								
PPG-LHT104	2.1	37.5	98	100	100	1.77	1.17	0.99	3.93*
IS-FLPT3	2.1	43.3	98	100	100	1.37	1.04	0.97	3.38*
AGRLP 138	3.3	54.7	100	99	100	1.83	0.66	0.72	3.20
KRC 6576	3.3	50.8	98	93	98	1.18	1.08	0.78	3.04
AGRLP 136	3.4	39.0	100	98	100	1.02	0.82	1.14	2.99
AGRLP 137	3.0	56.7	99	100	100	1.51	0.55	0.70	2.77
AGRLP 135	3.8	34.8	100	95	100	0.86	1.01	0.87	2.74
AGRLP 140	3.0	39.3	99	100	100	1.18	0.75	0.63	2.56
PPG-	1.9	40.8	97	100	100	1.00	0.80	0.69	2.49
	1 7	42.0	00	100	100	0.00	0.77	0.56	2.20
	1./	43.0	99	100	100	0.96	0.77	0.50	2.50
IS-FLPD4	2.0	47.0	98	100	99	1.21	0.05	0.41	2.28
N.4	27	45.6	00.5	00.4	00.5	1 2 2	0.00	0.76	2.04
iviean	2./	45.6	98.5	98.4	99.5	1.33	0.86	0.76	2.94
CV,%	35.9	12.1	1.5	5.2	1.0	27.11	17.07	41.10	21.76
LSD,0.05	1.4	8.3	2.2	/.6	1.5	0.54	0.22	0.47	0.96

Table 9. Dry matter yields, seedling vigor, maturity and stand persistence of perennial

Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth. Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence

emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 2 for complete scale.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 10. Dry matter yields, seedling vigor, maturity and stand persistence of festulolium varietiessown September 7, 2010 at Lexington, Kentucky.														
	Soodling	Maturity ²		P	ercent Star	nd	Height (in)	Yield (tons/acre)						
	Vigor ¹	20	10	2010	20	11	2011	2011						
Variety	Oct 14, 2010	May 5	Jun 7	Oct 14	Mar 11	Nov 7	May 5	May 5	Jun 7	Jul 14	Oct 31	Total		
Commercial Va	rieties-Availab	le for Farn	n Use											
Perseus	4.0	43.0	54.0	98	75	99	24	2.40	1.55	0.47	1.05	5.46*		
Perun	3.0	47.5	56.5	97	100	95	23	2.35	1.49	0.50	0.78	5.13*		
Lofa	2.8	37.0	54.5	97	100	97	23	2.23	1.43	0.42	0.88	4.76		
Spring Green	2.8	52.0	58.5	99	100	98	22	2.03	1.28	0.35	0.91	4.57		
Felopa	2.8	45.0	57.5	95	99	96	23	1.95	1.23	0.45	0.77	4.40		
Agula	2.1	46.3	60.0	92	99	97	23	1.98	1.22	0.36	0.62	4.18		
Barfest	2.4	38.3	48.8	96	100	100	20	1.84	1.07	0.34	0.77	4.02		
Hykor	1.8	56.0	29.5	95	97	97	32	1.43	0.93	0.53	1.11	4.00		
Felina	1.4	55.5	29.5	95	98	99	30	1.51	1.00	0.60	0.75	3.86		
Duo	4.6	53.5	62.0	100	100	92	30	1.76	1.21	0.19	0.79	3.80		
Sweet Tart	3.4	42.5	43.3	99	100	100	20	1.67	0.85	0.35	0.86	3.73		
Sulina	2.3	46.0	59.0	97	100	82	21	1.83	1.27	0.40	0.51	3.69		
Fojtan	1.0	52.5	29.0	91	96	99	20	0.88	0.92	0.46	0.91	3.17		
Experimental \	/arieties													
KYFA9819/E1	1.8	33.0	59.0	95	97	97	19	1.66	1.20	0.37	0.72	3.96		
KYFA9819EF	2.1	33.0	58.5	95	99	97	21	1.75	1.00	0.36	0.74	3.85		
KYFA9819/E2	2.0	35.0	56.0	92	96	96	19	1.55	1.03	0.40	0.80	3.78		
KYFA9819/E3	1.3	34.0	58.5	92	97	98	19	1.48	1.13	0.30	0.78	3.69		
Mean	2.4	44.1	51.4.	95.5	97.1	96.6	22.7	1.78	1.17	0.40	0.81	4.12		
CV,%	22.7	9.5	11.5	3.1	12.6	4.8	9.3	11.18	12.39	12.40	21.95	9.29		
LSD,0.05	0.8	5.9	8.4	4.2	17.4	6.8	3.0	0.28	0.21	0.07	0.26	0.56		
1 Vigor score ba	and on scale of	1 to 5 with	5 hoing the	n most viac	arous soodli	ing growth								

Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.
 Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence,

62=beginning of pollen shed. See Table 2 for complete scale.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

purchased from agricultural distributors. In Tables 11, 12, and 13, an open block indicates that the variety was not in that particular test (labeled at the top of the column); an (x) in the block means that the variety was in the test but vielded significantly less than the top-yielding variety. A single asterisk (*) means that the variety was not significantly different from the top variety, based on the 0.05 LSD. It is best to choose a variety that has performed well over several years and locations. Remember to consider the relative spring maturity and the distribution of yield across the growing season when evaluating productivity of ryegrass varieties (Tables 3 through 10).

Tables 14, 15, and 16 are summaries of yield data from 1999 to 2011 of commercial varieties that have been entered in the Kentucky trials. The data are listed as a percentage of the mean of the commercial varieties entered in each specific trial. In other words, the mean for each trial is 100 percent—varieties with percentages over 100 yielded better than average, and varieties with percentages less than 100 yielded lower than average. Direct, statistical comparisons of varieties cannot be made using the summary Tables 14, 15, and 16, but these comparisons do help to identify varieties for further consideration. Varieties that have performed better than average over many years and at several locations have very stable performance; others may have performed very well in wet years or on particular soil types. These details may influence variety choice and the information can be found in the yearly reports. See footnotes in Tables 14, 15, and 16 to determine which yearly report to refer to.

Summary

Selecting a good variety of annual or perennial ryegrass is an important first step in establishing a productive stand of grass. Proper management, beginning with seedbed preparation and continuing throughout the life of the stand, is necessary for even the highest-yielding variety to produce to its genetic potential.

The following is a list of University of Kentucky Cooperative Extension publications related to ryegrass management. They are available from your county Extension office and are listed in the "Publications" section of the UK Forage web site, www.uky.edu/Ag/Forage.

- *Lime and Fertilizer Recommendations* (AGR-1)
- Grain and Forage Crop Guide for Kentucky (AGR-18)
- Establishing Forage Crops (AGR-64)
- Forage Identification and Use Guide (AGR-175)
- Annual Ryegrass (AGR-179)
- New Recommendations for Perennial Ryegrass Seedings for Kentucky Horse Farms (ID-142)
- Rotational Grazing (ID-143)
- Establishing and Managing Horse Pastures (ID-147)

Authors

- G.L. Olson, Research Specialist, Forages
- S.R. Smith, Extension Professor, Forages
- T.D. Phillips, Associate Professor, Tall Fescue Breeding
- G.D. Lacefield, Extension Professor, Forages

Table 11. Performance of annual ryegrass varieties sown in 2010 at Lexington. ¹												
			Lexin	gton								
		Proprietor/KY	2010 ²	2010								
Variety	Туре	Distributor	2011 ³	2011								
Commercial Vari	eties-Available for Farm U	se										
Attain	Westerwold diploid	Smith Seed Services	x4									
Barmultra II	Italian	Barenbrug USA	*									
Big Boss	Westerwold tetraploid	Smith Seed Services	х									
Big Daddy	Westerwold tetraploid	Smith Seed Services	х	*								
Brangus	Italian diploid	KB Seed Solutions	х									
Bruiser	Westerwold diploid	Ampac Seed	х									
Ed	Westerwold diploid	Smith Seed Services	х									
Feast II	Italian tetraploid	Ampac Seed	х									
Fox	Italian diploid	DLF International	х									
Fria	Westerwold diploid	Allied Seed	х									
Gulf	Westerwold diploid	Public	х									
GR-AS10	Italian	Ampac Seed	х									
HS-1	Italian diploid	KB Seed Solutions	х									
Jackson	Westerwold diploid	The Wax Company	х	*								
KB Royal	Italian diploid	KB Seed Solutions	х									
Marshall	Westerwold diploid	The Wax Company	х	*								
Nelson	Westerwold tetraploid	The Wax Company		х								
TAMTBO	Italian tetraploid	Texas Ag Exp Sta	х									
Verdure	Westerwold tetraploid	Smith Seed Services	х									
Winterhawk	Westerwold diploid	Oregro Seeds	х									
Experimental Va	rieties											
BAR LMF9740		Barenbrug USA	х									
BAR LMF 9876		Barenbrug USA	х									
BARL MF9881		Barenbrug USA	*									
B-7.1366	Italian diploid	KB Seed Solutions	х									
ME4	Westerwold diploid	The Wax Company		*								
ME-94	Westerwold diploid	The Wax Company		*								
PPG-LMT 102	Italian diploid	Mountain View	х									
PPG-LMT 103	Italian tetraploid	Mountain View	х									
¹ See Table 14 for	summary of yield data on r	named varieties from 199	99-2011.									

² Estable 14 of summary of yield data of named valeties from 1999-2011.
 ² Establishment year.
 ³ Harvest year.
 ⁴ x in the box indicates the variety was in the test but yielded significantly less than the top yielding variety. Open boxes indicate the variety was not in the test.
 * Not significantly different from the highest yielding variety in the test.

Table 12. Performan	ce of perennial r	yegrass across years.											
			Lexington										
		Proprietor/KY		2008 ¹		20	09	2010					
Variety	Туре	Distributor	2009 ²	2010	2011	2010	2011	2011					
Commercial Varietie	s-Available for F	arm Use											
BG34	diploid	Barenbrug USA						x ³					
Boost	tetraploid	Allied Seed	*	*	*	*	*	*					
Calibra	tetraploid	DLF International	х	х	*	х	*	х					
Granddaddy	tetraploid	Smith Seed Services				х	х	х					
Herbal	-	ProSeeds Marketing	х	х	х								
Impressario	tetraploid	DLF International				*	*						
Lactal	tetraploid	Brett Young				х	*						
Linn	diploid	Public	х	*	х	*	х	х					
Orantas	diploid	DLF International				х	х						
Ortet	tetraploid	Oregro Seeds, Inc.	*	*	*								
Polim	tetraploid	DLF International						*					
Power	tetraploid	Ampac Seed Company	х	*	*	х	*	х					
Tonga	tetraploid	Kings AgriSeeds				*	*						
Experimental Variet	ies												
AGRLP 135	diploid	AgResearch						х					
AGRLP 136	diploid	AgResearch						х					
AGRLP 137	diploid	AgResearch						х					
AGRLP 138	diploid	AgResearch						х					
AGRLP 140	diploid	AgResearch						х					
AGRLP 141	diploid	AgResearch						х					
IS-FLPD4	diploid	DLF International						х					
IS-FLPT3	tetraploid	DLF International						*					
KRC 6576	tetraploid	AgResearch						х					
PPG-FPRT 103	tetraploid	Mountain View						х					
PPG-LHT 104	tetraploid	Mountain View						*					
PSG AM 108	tetraploid	Pickseed West	х	*	х								
PSG 47 MOL	tetraploid	Pickseed West	*	*	х								
RAD-CPS211	tetraploid	Radix Research	*	*	*								
RAD-ERF214	diploid	Radix Research				x	*						

¹ Establishment year.
 ² Harvest year.
 ³ x in the box indicates the variety was in the test but yielded significantly less than the top yielding variety. Open boxes indicate the variety was not in the test.
 * Not significantly different from the highest yielding variety in the test.

		Proprietor/KY		2008 ¹		20	09	2010
Variety	Type ²	Distributor	2009 ³	2010	2011	2010	2011	2011
Commercial Vari	eties-Available f	or Farm Use						
Agula	MF x IR	Allied Seed						x4
Barfest	MF x PR	Barenbrug USA						x
Duo	MF x PR	Ampac Seed	*	*	x	*	*	x
Felina	TF x IR	DLF International						x
Felopa	MF x IR	Allied Seed						x
Fojtan	TF x IR	DLF International						x
Hykor	TF x IR	DLF International						x
Lofa	MF x IR	DLF International						x
Perseus	MF x IR	DLF International						*
Perun	MF x IR	DLF International						*
Spring Green	MF x PR	Turf Seed	*	*	*	*	*	x
Sulina	MF x IR	Allied Seed						x
Sweet Tart	MF x IR	ProSeeds Marketing	х	х	x			x
Experimental Va	rieties							
KYFA 9819EF	MF x IR	KY Agric. Exp. Station						x
KYFA 9819E1	MF x IR	KY Agric. Exp. Station						x
KYFA 9819E2	MF x IR	KY Agric. Exp. Station						x
KYFA 9819E3	MF x IR	KY Agric. Exp. Station						x
WFLS		Rose AgriSeed	х	х	x			

tablishmer

¹ Establishment year.
 ² MF=meadow fescue, TF=tall fescue, IR=Italian ryegrass, PR=perennial ryegrass.
 ³ Harvest year.
 ⁴ x in the box indicates the variety was in the test but yielded significantly less than the top yielding variety. Open boxes indicate the variety was not in the test.
 ^{*} Not significantly different from the highest yielding variety in the test.

Table 14. Su	mmary of Kentucky Anr	nual Ryegrass Yield	d Trials	5 1999	9-201	1 (yie	eld sh	own	as a p	perce	ntage	of th	e me	ean of	the o	omm	ercia	l vari	eties in
the that).							Lov	inate	n1					Dr	incot		Bowling		
			002,3	01	03	04	05	06	07	08	00	10	10	00	02	01	00	02	
Variety	Type	Proprietor	33	VI	05	04	05		trial	sare	09 1 veai	viel	10	00	02	04	00	05	(#trials)
Abundant	tetraploid	Ampac Seed						26			Jean	<i>y.</i> e.,							-
Acrobat		Proseeds								244									_
, lei ob at		Marketing																	
Andy	Westerwold tetraploid	DLF International	112	105										99					105(3)
Angus I	Westerwold tetraploid	DLF International														80			-
Attain	Westerwold tetraploid	Smith Seed Services										113							-
Aurelia	Italian tetraploid	Forage Genetics		120												130			125(2)
Avance	Westerwold diploid	DLF International	113											109					111(2)
Barextra	Italian tetraploid	Barenbrug USA													117				-
Barmultra II	Italian	Barenbrug USA										136							-
Big Boss	Westerwold tetraploid	Smith Seed Services										99							-
Big Daddy	Westerwold tetraploid	FFR/Sou. St.	87	86								88	102	90	85		104		92(7)
Brangus	Italian diploid	KB SeedSolutions										96							_
Bruiser	Westerwold diploid	Ampac Seed								111	104	102							106(3)
Common		Public												85	85		95	87	88(4)
DH-3	Italian tetraploid	Allied Seed							106	45									76(2)
Diamond T	Italian tetraploid	Oregro Seeds						18											_
Domino	Italian tetraploid	DLF International													121				-
Ed	Westerwold diploid	Smith Seed Services										98							-
Fantastic	Westerwold diploid	Ampac Seed	83					105	98					90			97		92(4)
Feast	Italian tetraploid	Ampac Seed		90															_
Feast II	Italian tetraploid	Ampac Seed		98						59	112	111			123				101(5)
Flying A	Westerwold diploid	Oregro Seeds						85		100									-
Fox	Italian diploid	DLF International										110							-
Fria	Westerwold diploid	Allied Seed										97							-
GR-AS10	Italian	Ampac Seed										115							-
Graze-N-Gro	Westerwold diploid	Seed Research of OR			105				78							94		107	96(4)
Gulf	Westerwold diploid	Public		72					78	44	86	79		81	77	57	86		73(9)
Hercules	Westerwold tetraploid	Barenbrug USA	114											110					112(2)
HS-1	Italian diploid	KB SeedSolutions										73							_
Jackson	Westerwold diploid	The Wax Co.				80	100	138	120	100	100	101	105		87			96	99(9)
Jeanne	Italian tetraploid	DLF International		124															_
Jumbo	Westerwold tetraploid	Barenbrug USA			103													104	104(2)
KB Royal	Italian diploid	KB SeedSolutions										84							_
King	Westerwold diploid	Lewis Seed		92															-
Marshall	Westerwold diploid	The Wax Co.	87		92	120	100	221	116	169	99	102	104	102	97		114	106	108(13)
Monarque	Italian tetraploid	Seed Research of OR														117			-
Nelson	Westerwold tetraploid	The Wax Co.											89						_
Passerel Plus	Westerwold diploid	Pennington Seed													100				
Rio	Westerwold diploid		88											100	97		102		97(4)
Spark	tetraploid	DLF International	87														83		85(2)
Stockaid	diploid							181											-
Striker	Westerwold tetraploid	Seed Research of OR							104										-
TAMTBO	Italian tetraploid	Tex. Ag Exp Sta.								80		103							92(2)
Tam 90	Italian diploid	Tex. Ag Exp Sta.								82					85				84(2)
TetraPro	Italian tetraploid	Tex. Ag Exp Sta.								67									_
Tetrelite II	Intermediate	DLF International														122			-
T-Rex	Westerwold tetraploid	SaddleButte						25											-
Verdure	Westerwold tetraploid	Smith Seed Services										87							_
Winterhawk	Westerwold diploid	Oregro Seeds										106							_
Winter Star	Italian tetraploid	Ampac Seed	İ	87	ĺ	İ	İ	ĺ	ĺ	İ				1	96	İ			92(2)
Zorro	Italian tetraploid	DLF International	120	127										135	130		118		126(5)
1 In annual m					.:II NI	ata D				الباسمية	Ladala	1	1+ - C		- 200	C]	4.		

In annual ryegrass, low yielding varieties usually result from winterkill. Note: Due to severe winterkill, yield results from the 2006 planting were not included in the overall mean.

 ¹ Year trial was established.
 ² Year trial was established.
 ³ Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in 1999 was harvested 1 year, so the final report would be "2000 Annual and Perennial Ryegrass Report" archived in the KY Forage website at <www.uky.edu/Ag/ Forage>.
 ⁴ Mean only presented when respective variety was included in two or more trials.

Table 15. Summary of Kentucky Perennial Ryegrass Yield Trials 1999-2011 (yield shown as a percentage of the mean of the commercial varieties in the trial).														varieties		
						Le	xingto	on				Princeton		Bow Gre	/ling een	
			99 ^{1,2}	01	03	04	05	06	07	08	09	00	02	00	03	Mean ^{3,4}
Variety	Туре	Proprietor	2yr ⁵	2yr	2yr	3yr	3yr	2yr	3yr	3yr	2yr	2yr	3yr	2yr	2yr	(#trials)
Aires	diploid	Ampac Seed		95									93			94(2)
Amazon	tetraploid	AgriBioTech	108			99							107			104(3)
Anaconda	tetraploid	Caudill Seed	113									95		103		104(3)
Aubisque	tetraploid	Seed Research of OR			144										99	122(2)
Bandit	tetraploid	Grassland West										106		114		110(2)
Bastion C-2	tetraploid	Seed Research of OR				91										-
Bestfor	tetraploid	Improved Forages										113	107	120		113(3)
Best for Plus	hybrid tetraploid	Improved Forages			116	108	118								136	120(4)
BG-34	diploid	Barenbrug USA					83	85								84(2)
Bison	hybrid tetraploid	International Seeds													140	-
Boost	tetraploid	Allied Seed							130	125	120					125(3)
Boxer	tetraploid	AgriBioTech	121									106				114(2)
Calibra	tetraploid	DLF International								96	109		112			106(3)
CAS MP64	diploid	Cascade International		97												-
Citadel	tetraploid	Ag Canada	101									94	113	103		103(4)
Derby		Public												74		-
Eurostar	tetraploid	Seed Research of OR							112							-
Feeder	diploid	Seed Research of OR							76							-
Granddaddy	tetraploid	Smith Seed		118				101	109		73		111			102(5)
Green Gold	tetraploid	Grasslands Oregon						96								-
Herbal		ProSeeds Marketing								77						-
Impressario	tetraploid	DLF International									110					-
Lactal	tetraploid	Brett Young									102					-
Lasso	diploid	DLF International		98												-
Linn	diploid	Public	87	98	98	102		98	85	84	98	87	88	77		91(11)
Manhatten	diploid												85			-
Mara	diploid	Barenbrug USA												85		-
Matrix	diploid	Cropmark seeds			77										64	-
Maverick Gold	hybrid tetraploid	Ampac Seed		97									71			84(2)
Orantas	diploid	DLF International									81					-
Ortet	tetraploid	Oregro Seeds								114						-
Polly II	tetraploid	FFR/Sou. St.	104									110		125		113(3)
Polly Plus	hybrid tetraploid	Allied Seed			64										60	62(2)
Power	tetraploid	Ampac Seed							110	103	104					106(3)
Quartermaster	tetraploid	Radix Research					122									-
Quartet	tetraploid	Ampac Seed		97			56		46				113			78(4)
RAD-CPS212	hybrid tetraploid	Radix Research					134									-
RAD-MI125	hybrid tetraploid	Mountain View Seeds						120								-
Sampson	diploid	International Seeds	87													_
Sierra	diploid	Lewis Seed Co.					89									-
Tonga	tetraploid	Kings AgriSeeds					96				103					100(2)
Yatsyn	diploid	Barenbrug USA	80									89				85(2)

¹ Year trial was established.
 ² Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in 1999 was harvested 2 years, so the final report would be "2001 Annual and Perennial Ryegrass Report" archived in the KY Forage website at <www.uky.edu/Ag/Forage>.
 ³ Mean only presented when respective variety was included in two or more trials.
 ⁴ In perennial ryegrass, low yielding varieties usually result from winterkill or summer mortality.
 ⁵ Number of years of data

Table 16. Sum	mary of Kentucky Fe	stulolium Yield Trials	1999-2011 (yield she	own as apercentage of th	ne mean of t	he commercial vari	eties in
the trial). ¹							

					Lexingtor		Princeton	Quicl				
		1999 ^{2,3}	2001	2003	2005	2007	2008	2009	2000	2001	2003	Mean ⁴
Variety	Proprietor	2-yr⁵	3-yr	2-yr	3-yr	3yr	3yr	2yr	2-yr	2-yr	2-yr	(#trials)
Duo	Ampac Seed	104			84		103	99				98(4)
Felina	DLF International		101									-
Hykor	DLF International			98							98	98(2)
Spring Green	Turf-Seed		88		105	100	114	101		97		101(6)
Sweet Tart	ProSeeds Marketing						88					-
Vorage	Improved Forages								99			-

¹ The festuloliums were in fescue trials from 1999-2005.

² Year trial was established.

² Tear trial was established.
 ³ Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in 1999 was harvested 2 years, so the final report would be "2001 Tall Fescue Report" archived in the KY Forage website at <www.uky.edu/Ag/Forage>.
 ⁴ Mean only presented when respective variety was included in two or more trials.
 ⁵ Number of years of data

Mention or display of a trademark, proprietary product, or firm in text or figures does not constitute an endorsement and does not imply approval to the exclusion of other suitable products or firms.

> The College of Agriculture is an Equal Opportunity Organization 12-2011