

Descriptions and Reference Laboratory Characterization Data for Some Soils in Kentucky

A.D. Karathanasis, Department of Plant and Soil Sciences

Kentucky Agricultural Experiment Station • University of Kentucky • College of Agriculture Department of Plant and Soil Sciences • Lexington, Kentucky 40546

Introduction

This is the ninth in a series of publications which are planned to be released periodically to compile and preserve the physical, chemical, mineralogical, and morphological data resulting from soil survey and selected research activities in the State of Kentucky. This report includes supplementary soil reference characterization data for the entire state. Many of these data have been distributed in unpublished form to those immediately concerned. Some of the data and descriptions have appeared in scientific journals, regional bulletins, and text of published soil surveys. However, most of these data have not previously been readily available to all potential users.

While these data were being assembled, some changes were made in laboratory methods. Some were improved and some new ones were devised. Consequently, laboratory data for different soils cannot always be directly compared without allowance for the method. The method used is indicated by a symbol in the column headings of the data table, or as a footnote to the table. These symbols are identified in Table 1. The methods are described in Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples, SSIR No. 1, Soil Conservation Service, USDA (1984), and the Soil Survey Laboratory Methods Manual (1996). Symbols not shown in Table 1 indicate procedures on file with the Department of Plant and Soil Science and are briefly described in Table 2 on the next page.

The soil descriptions published here were prepared as working documents to meet a specific need at the time the soil samples were collected. The soil scientists

who wrote them had no idea they would be published. Editing has been limited, for the most part to that necessary for conformance to Soil Survey Manual (1993). Field textural estimates have been retained even though some are at variance with laboratory data. Horizon designations have been adjusted for conformance to the Soil Survey Manual (1993).

There were several reasons for sampling these soils. Some were sampled to study soil genesis, some to facilitate classification, and some to obtain data to permit more useful agronomic and engineering interpretations. Partly because of these studies, the concepts of some soil series have been modified. As a consequence, the soil series name assigned to a soil at the time of sampling is not always the name that would be assigned today. After the laboratory determinations were completed, the descriptions and data were reviewed again to determine if the series names were still current. If they were not. they were changed to correspond with the current correlation of the mapping unit.

Although the pedon name corresponds with the *mapping unit* name, the laboratory data may not place the pedon within the limits of the series *taxonomic unit* definition. If the pedon deviated slightly from the taxonomic unit concept, no explanatory notes were made. If one or more diagnostic characteristics of the pedon sampled were outside the series definition, but the interpretations for all common uses of the soil were the same as for that series, a note was made that the pedon was a *taxadjunct*. If the characteristics of the pedon sampled were sufficiently different so that it would qualify for a new series. but the extent of the soil in the county was not great enough to establish a new Table 1. Code sheet for laboratory methods (SSIR #1, SCS-USDA, 1984).

1. Sample Collecting and Preparation

- A. Field Sampling 1. Site Selection
- 2. Pedon sampling
- Laboratory Preparation
- Standard (air-dry)
- a. Square-hole 2-mm sieve
- Round-hole 2-mm sieve b.

2. Conventions

B.

- A. Size-fraction base for reporting 1. < 2 mm
- 2. > 2 mm, specified size
- B. Data sheet symbols
 - Trace, not measurable by quantitatr: tive procedure used or less than reportable amount.
 - Trace, detectable only by qualitatr (S): tive procedures more sensitive than quantitative procedure used.
 - Analysis run, but none detected. -(S):
 - None detected by/ sensitive qualitative test blank: Analysis not run.

 - Less than reported amount or <: none present

3. Particle-size Analysis

- Particles , 2mm (pipet method) Α.
- 1. Air-dry samples Particles > 2 mm B.
 - Weight estimates 1
 - By field and laboratory weighing а
 - b. From column and weight estimates
 - 2. Volume estimates

5. Ion-exchange Analyses

- A. Cation-exchange capacity
 - 1. NH4OAc, pH 7.0 Buchner funnel (CEC-7) a. Direct distillation
 - b. Displacement, distillation
 - 3. By summation a. Sum of cations (CEC-8.2)
- B. Extractable bases
 - 1. NH4OAc, pH 7.0 Buchner funnel
 - a. Uncorrected b. Corrected (exchangeable)
- C. Base saturation
- 1. NH4OAc, pH 7.0

3

3. Sum of cations, TEA, pH 8.2

series, the pedon was called a variant. In both cases, the reason for the deviation is noted.

6. Chemical Analyses

- A. Organic carbon
 - 1. Acid-dichromate digestion a. FeSO4 titration

 - b. CO2 evolution, gravimetric c. FeSO4 titration, automatic titrator
- G. Aluminum
 - 1. KCl extraction 1, 30 min
 - Aluminon I a.
 - b. Aluminon II
 - Aluminon III c.
 - d. Flouride titration
 - e. Atomic absorption
- H. Extractable acidity
 - 1. BaCl2-triethanolamine I
 - a. Back titration with HCI
- N. Calcium 1.
 - Saturation extract EDTA titration
 - a. h Atomic absorption
 - NH4OAc extraction 2.
 - EDTA-alcohol separation a.
 - b Oxalate-permanganate I
 - Oxalate-permanganate II Fe, Al, and
 - с. Mn removed
- d.
 - Oxalate-cerate z. Atomic absorption
- О. Magnesium
 - 1. Saturation extract
 - a. EDTA titration
 - b. Atomic absorption
 - NH4OAc extraction
 - EDTA-alcohol separation a.
 - b. Phosphate titration
 - Gravimetric, Mg2P2O7 c.
- z. Atomic absorption
- P. Sodium

2

- 1 Saturation extract
- a. Flame photometry
- b. Atomic absorption
- NH4OAc extraction
- a. Flame photometry
- z. Atomic absorption
- Q. Potassium
- Saturation extract 1
- Flame photometry a.
 - b. Atomic absorption
- 2. NH4OAc extraction
- z. Atomic absorption
- S. Phosphorus
 - Perchloric acid digestion 1.
 - a. Molybdovanadophosphoric acid colorimetry
 - 2. Adsorption coefficient
- 7. Mineralogy
 - A. Instrumental analysis
 - 2. X-ray diffraction

KCI

c. d. NaF

Soil suspension

a. Water dilution

b. Saturated paste

8. Miscellaneous Reaction (pH) C. 1

In some cases, laboratory data and field investigations showed that the soils in a certain mapping unit were dominantly in a series other than that originally used to name it. Then the names of the mapping unit and the pedon representing it were changed. Soil series names in this publication follow 2000 series definitions.

Literature Cited

- Bailey H. H., R. L. Blevins, and R. I. Barnhisel. 1972. Descriptions and laboratory data for some soils in Kentucky: 1. Purchase Region. University of Kentucky Agric. Exp. Station., pp 57.
- Jackson, M. L. 1985. Soil chemical analysis—advanced course. Pub. by the author. Dept. of Soils, University of Wisconsin, Madison, WI.
- Karathanasis, A. D. and B. F. Hajek. 1982. Revised methods for rapid quantitative determination of minerals in soil clays. Soil Sci. Soc. Am. J. 46:419-425.
- Karathanasis, A. D., H. H. Bailey, R. I. Barnhisel, and R. L. Blevins. 1986.
 Descriptions and laboratory data for some soils in Kentucky: 2. Bluegrass Region. Special Report 86-1, University of Kentucky Ag. Exp. Station. pp. 105.
- Karathanasis, A. D., H. H. Bailey, R. I. Barnhisel, and R. L. Blevins. 1988.
 Descriptions and laboratory data for some soils in Kentucky: 3. Western Coalfields Region. Special Report 88-2, University of Kentucky Ag. Exp. Station. pp. 104.

Table 2. Additional methods used by the Department of Plant and Soil Science.

Particle Size Analysis

3X2 Silt by elutriation, sand by sieving.

Chemical Analysis

6N2X. Calcium, Flame Photometer 6N2Y. Calcium, DU Spectrophotometer 7N7. CaCO₂ equivalent, Procedure 23b, USDA Handbook 60, U. S. Salinity Lab. 1954. 6O2X. Magnesium, Absorption Spectrophotometer 6O2Y. Magnesium, DU Spectrophotometer 6P2X. Sodium, DU Spectrometer 6D2X. Potassium, Flame Photometer 6O2Y. Potassium, Flame Photometer 6O2Y. Potassium, DU Spectrometer 6S6. Phosphorus. Extractable P, Bray No. 1, Soil Sci. 59:39-45, 1945.

Miscellaneous

807. Lime Requirement, SSSA Proc. 25:274-277, 1961.

- Karathanasis, A. D., H. H. Bailey, R. I. Barnhisel, and R. L. Blevins. 1988.
 Descriptions and laboratory data for some soils in Kentucky: 4. Western Pennyroyal Region. Special Report 88-3, University of Kentucky Ag. Exp. Station. pp. 116.
- Karathanasis, A. D., H. H. Bailey, R. I. Barnhisel, and R. L. Blevins. 1991.
 Descriptions and laboratory data for some soils in Kentucky: 5. Mountains and Eastern Coalfields Region. Special Report 91-1, University of Kentucky Ag. Exp. Station. pp. 296.
- Karathanasis, A. D. 1992. Descriptions and laboratory data for some soils in Kentucky: 6. Knobs Region. Special Report 92-1, University of Kentucky Ag. Exp. Station. pp. 84.
- Karathanasis, A. D. 1993. Descriptions and laboratory data for some soils in Kentucky: 7. Eastern Pennyroyal Region. Special Report 93-1. University of Kentucky Ag. Exp Station, pp 78.
 Klute, A. (ed.) 1986. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (2nd edition), Agronomy

Monographs #9, ASA-SSSA.

- NRCS. 1995. Soil Survey Laboratory Information Manual. Soil Survey Investigations Report # 45. USDA-NRCS, National Soil Survey Center, Soil Survey Laboratory, Lincoln, NE.
- NRCS. 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report #42, USDA, Washington, D. C.
- Soil Survey Division Staff. 1993. Soil Survey Manual. Agr. Handbook # 18. USDA, Washington, D.C.
- Soil Survey Staff. 1999. Soil Taxonomy, A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Agric. Handbook 436. USDA-NRCS.
- Soil Conservation Service, USDA. 1981. Examination and description of soils in the field. Soil Survey Manual 430-V-SSM. U. S. Government Printing Office, Washington, D. C.
- Soil Conservation Service, USDA. 1984.
 Procedures for collecting soil samples and methods of analysis for soil surveys. Soil Survey Investigations Rep.
 1. U. S. Government Printing Office, Washington, D. C.

Key to mineral symbols not listed under Mineralogy Data Tables.

Α	Amorphous
С	Chlorite
F	Feldspar
1	Illite
К	Kaolinite
М	Montmorillonite
Mc	Montmorillonite with Al interlayers
M/V	Interstratified Montmorillonite-Vermiculite
Q	Quartz
V	Vermiculite
V/I	Interstratified Vermiculite/Illite

Acknowledgments

Appreciation is expressed to Kentucky members of the Natural Resource Conservation Service, U. S. Department of Agriculture, for their valuable assistance in site location, sampling, correlation, and interpretation of data.

In addition, appreciation is extended to the Kentucky Division of Conservation of the Natural Resource and Environmental Protection Cabinet, the U. S. Forest Service and other Agencies involved in the Kentucky Cooperative Soil Survey Program.

Thanks, also, to all laboratory personnel involved in the analyses and tabulation of the characterization data. Finally, special gratitude is extended to Yvonne Thompson for assistance in compiling this data and Bill Craddock (Kentucky NRCS) for helping with the final correlation of the pedons involved.

Soil Series Index

Series	Pedon #	Classification	County	Lawrence		Aquic Fragiudalfs	Madison
Alford	00KY-111-01	Ultic Hapludalfs	Jefferson	Lily	91KY-175-11	Typic Hapludults	Morgan
Alford	00KY-111-02	Ultic Hapludalfs	Jefferson	Lindside	93KY-239-14	Fluvaquentic Hapludolls	Woodford
Alford	00KY-111-03		Jefferson	Lindside	93KY-239-17	Fluvaquentic Eutrudepts	Woodford
Allegheny	98KY-011-03	Typic Hapludults	Bath	Loradale	93KY-239-01	Typic Argiudolls	Woodford
Allegheny	99KY-065-03	Typic Hapludults	Estill	Lowell	93KY-239-05	Typic Hapludalfs	Woodford
Allegheny	01KY-129-02		Lee	Lowell	99KY-011-05	Typic Hapludalfs	Bath
Alticrest	94KY-133-01	Typic Dystrudepts	Letcher	Lowell	99KY-011-09	Typic Hapludalfs	Bath
Ashton	90KY-135-15	Mollic Hapludalfs	Lewis	Maury	93KY-239-09	Typic Paleudalfs	Woodford
Atkins	99KY-011-01	Fluvaquentic Endoaquepts	Bath	Maury	93KY-239-11	Typic Paleudalfs	Woodford
Berea		Aquic Hapludults	Madison	Maury	93KY-239-12	Typic Hapludalfs	Woodford
Berks	90KY-135-05		Lewis	Maury	93KY-239-13	Typic Paleudalfs	Woodford
Blairton	90KY-135-01		Lewis	Maury	93KY-239-15	Typic Paleudalfs	Woodford
Boonesboro	93KY-239-08		Woodford	McAfee	93KY-239-10	Mollic Hapludalfs	Woodford
Brownsville	90KY-135-02		Lewis	Melvin	90KY-135-28	Typic Fluvaquents	Lewis
Caneyville	94KY-135-55		Lewis	Memphis	03KY-007-02	Typic Hapludalfs	Ballard
Caneyville	94KY-135-59		Lewis	Muse	94KY-135-16	Typic Hapludults	Lewis
Caneyville	94KY-135-60		Lewis	Muse	94KY-135-38		Lewis
Caneyville	94KY-135-64		Lewis	Muse	94KY-135-39		Lewis
Catalpa	98KY-075-01		Fulton	Newark	93KY-239-07	Fluvaquentic Endoaquepts	Woodford
Catalpa	01KY-075-01		Fulton	Nicholson	96KY-227-10	Oxyaquic Fraglossudalfs	Warren
Chavies	90KY-135-13	Ultic Hapludalfs	Lewis	Nolin	01KY-129-01	Dystric Fluventic Eutrudepts	Lee
Cumberland	96KY-227-08	Rhodic Paleudalfs	Warren	Orrville	92KY-031-38	Oxyaquic Dystrudepts	Butler
Cumberland	97KY-227-03	Typic Paleudalfs	Warren	Otwell	90KY-135-14	Oxyaquic Fragiudalfs	Lewis
Cynthiana	99KY-011-10	Lithic Hapludalfs	Bath	Phillippy	01KY-075-03	Fluvaquentic Hapludolls	Fulton
Egam	93KY-239-19		Woodford	Purdy	99KY-011-02	Typic Endoaquults	Bath
Egam	99KY-011-03	Cumulic Hapludolls	Bath	Ramsey	94KY-133-02	Lithic Dystrudepts	Letcher
Elk	90KY-135-16	Ultic Hapludalfs	Lewis	Rigley	95KY-119-03	Typic Dystrudepts	Knott
Elk	93KY-239-16	Ultic Hapludalfs	Woodford	Robinsonville	98KY-075-02	Fluventic Hapludolls	Fulton
Fairmount	93KY-239-06	Lithic Argiudolls	Woodford	Sandview	93KY-239-03	Typic Paleudalfs	Woodford
Faywood	93KY-239-02		Woodford	Sandview	99KY-011-07		Bath
Faywood	99KY-011-08		Bath	Shelocta	90KY-135-03		Lewis
Feliciana	03KY-145-01	Ultic Hapludalfs	McCracken	Shelocta	94KY-159-02		Martin
Gilpin	90KY-027-01		Breckinridge	Shelocta	94KY-205-02		Rowan
Hagerstown	94KY-135-21		Lewis	Shrouts	99KY-011-06		Bath
Hagerstown	99KY-011-04		Bath	Shrouts	99KY-011-11		Bath
Hazleton	94KY-119-06		Knott	Shrouts			Madison
Hazleton	94KY-159-01		Martin	Trappist	90KY-135-26		Lewis
Helechawa	94KY-205-01		Rowan	Trappist	94KY-135-12		Lewis
Huntington	93KY-239-04		Woodford	Trappist	94KY-135-13		Lewis
Huntington	93KY-239-18		Woodford	Trappist	94KY-135-30	Typic Hapludults	Lewis
Kinnick		Dystric Fluventic Eutrudepts	Madison	Vertrees	96KY-227-09	Typic Paleudalfs	Warren
Lakin	90KY-135-10	Lamellic Udipsamments	Lewis	Vertrees	97KY-227-19		Warren
Lakin	90KY-135-11	Lamellic Udipsamments	Lewis	Wheeling	90KY-135-12	Ultic Hapludalfs	Lewis

Soil: Alford, silt loam (Taxadjunct)

Pedon #: S00KY-111-01-(1-8)

Classification: Fine-silty, mixed, semiactive, mesic Ultic Hapludalfs

Location: Jefferson Co., KY; typical pedon of Memphis Var. at Waverly park. 00KY111003; USGS Louisville West topographic quadrangle.

Parent Material: loess over residuum

Vegetation:

Landscape Position:

Drainage:

Moisture when sampled: Sampling Date: Permeability: Slope: 11%

Described by:

Oi—0 to 1 inches; Leaf litter.

A—1 to 7 inches; dark grayish brown (10YR 4/2) silt loam, light gray (10YR 7/2) dry; moderate fine and medium granular structure; very friable; many fine to coarse roots throughout; abrupt wavy boundary.

BA—7 to 11 inches; yellowish brown (10YR 5/6) silt loam; moderate fine and medium subangular blocky structure; friable; many fine to coarse roots throughout; clear wavy boundary. Bt1—11 to 25 inches; yellowish red (5YR 4/6) silt loam; moderate medium subangular blocky structure; friable; common fine to coarse roots; common distinct clay films; clear wavy boundary.

Bt2—25 to 39 inches; 70 percent yellowish red (5YR 4/6) and 30 percent yellowish brown 10YR 5/6 silt loam; moderate medium and coarse subangular blocky structure; friable; few fine to coarse roots; many distinct clay films; clear wavy boundary.

Bt3—39 to 55 inches; 60 percent strong brown (7.5YR 5/6) and 40 percent brownish yellow (10YR 6/6) silt loam; moderate medium subangular blocky structure; friable; few fine to coarse roots; common distinct clay films; clear wavy boundary.

2Bt4—55 to 66 inches; 60 percent yellowish brown (10YR 5/4) and 30 percent light brownish gray (10YR 6/2) and

10 percent strong brown(7.5YR 5/6) silt loam; moderate medium and coarse subangular blocky structure; friable; few fine and medium roots; few faint clay films; abrupt wavy boundary.

2Bt5—66 to 75 inches; 70 percent strong brown (7.5YR 4/6) and 20 percent yellowish brown (10YR 5/6) and 10 percentlight brownish gray (10YR6/2) silt loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; many iron-manganese stains; common distinct clay films; 2 percent siltstone channers; clear wavy boundary.

2BC—75 to 84 inches; 80 percent yellowish brown (10YR 5/6) and 15 percent strong brown (7.5YR 5/8) and 5 percent pale brown (10YR 6/3) silt loam; moderate medium angular blocky structure; friable; 2 percent siderite; 5 percent siltstone channers.

SOIL TYPE......ALFORD (TAXADJUNCT) LOCATIONJEFFERSON

									Particle Size	Class and	Particle Dia	meter (mm))						
								3	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	Ints
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
1-7	A	9.5	75.2	15.3	0.1	0.7	1.2	1.4		6.1						sil			
7-11	BA	9.1	78.7	12.2	0.1	0.1	0.5	0.8		7.6						sil/si			
11-25	Bt,	5.5	68.5	26.0	0	0	0.1	0.2		5.2						sil/sicl			
25-39	Bt,	5.5	74.2	20.3	0	0.1	0.1	0.2		5.1	1					sil			
39-55	Bt,	11.9	71.3	16.8	0	0.3	0.6	2.4		8.6	1					sil			
55-66	2Bt	4.4	88.8	6.8	0	0.2	0.4	0.4		3.4	1					si			
66-75	2Bt	5.8	78.3	15.9	0.5	0.8	0.7	0.5		3.3	1					sil			
75-84	2BC	10.6	70.9	18.5	3.3	2.5	1.5	0.7		2.6						sil			
		pH			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
55-66	4.10			0.31	2.29	0.03	0.05	2.68	6.83	39	32		5.60	8.28					
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Alford, silt loam (Taxadjunct)

Pedon #: S00KY-111-02-(1-9)

Classification: Fine-silty, mixed, active, mesic Ultic Hapludalfs

Location: Jefferson Co., KY; typical pedon of Mike Burke 10 acre home site. 00KY111004; USGS Louisville West topographic quadrangle.

Parent Material: Loess over residuum

Vegetation:

Landscape Position: Upland, ridge

Drainage:

Moisture when sampled:

Sampling Date:

Permeability:

Slope: 5%

Described by:

Ap—0 to 6 inches; dark grayish brown (10YR4/2) silt loam, pale brown (10YR 6/3) dry; moderate fine and medium granular structure; very friable; common fine and medium roots; abrupt smooth boundary.

BA—6 to 13 inches; yellowish brown (10YR 5/4) silt loam, moderate fine and medium subangular blocky structure; very friable; few fine roots; abrupt smooth boundary.

Bt1—13 to 31 inches; yellowish red (5YR 4/6) silt loam; moderate medium subangular blocky structure; friable; few fine roots; common distinct clay films and yellowish brown (10YR 5/4) silt coats; many mica flakes; clear wavy boundary.

Bt2—31 to 40 inches; 60 percent strong brown (7.5YR 4/6) and 40 percent yellowish brown (10YR 5/6) silt loam;

moderate medium and coarse subangular blocky structure; friable; few fine roots; many distinct clay films; many mica flakes; clear wavy boundary.

Bt3—40 to 57 inches; 60 percent strong brown (7.5YR4/6) and 40 percent yellowish brown (10YR 5/6) silt loam; common medium light olive brown (2.5Y 5.3) moist mottles; moderate medium subangular blocky structure; friable; few fine roots; common distinct clay films; many mica flakes; clear wavy boundary.

Bt4—57 to 76 inches; 50 percent yellowish red (5YR 4/6) and 50 percent strong brown (7.5YR 4/6) silt loam; many medium light olive brown (2.5Y 5/3) mottles; moderate fine and medium subangular blocky structure; friable; few fine roots; few iron-manganese stains; common distinct clay films; many mica flakes; clear wavy boundary.

2Bt5—76 to 84 inches; 50 percent yellowish red (5YR 4/6) and 50 percent strong brown (7.5YR 4/6) silt loam

and loam; many medium light olive brown (2.5Y 5/3) moist mottles; weak fine and medium subangular blocky structure; firm; few fine roots; common iron-manganese stains; common distinct clay films; many mica flakes; clear wavy boundary.

2Bt6—84 to 95 inches; strong brown (7.5YR 5/6) and yellowish brown 10YR 5/6) and light olive brown (2.5Y 5/3) loam and silt loam; weak fine and medium subangular blocky structure; firm; few fine roots; common iron-manganese stains; few distinct clay films; many mica flakes; clear wavy boundary.

2Bt7—95 to 101 inches; 40 percent strong brown (7.5YR 4/6) and 30 percent red (2.5YR4/6) and 30 percent yellowish brown (10YR 5/4) loam and silt loam; common medium light brownish gray (10YR 6/2) moist mottles; weak fine and medium subangular blocky structure; firm; few fine roots; common iron-manganese stains; few distinct clay films; many mica flakes.

SOIL TYPE	ALFORD (TAXADJUNCT)
LOCATION	JEFFERSON COUNTY, KENTUCKY

PEDON #	S00-KY-111-02-(1-9)
GENERAL METHODS	1A1 1A2 1B1B 2A1

							1		Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-6	Ap	17.7	70.9	11.4	1.4	1.1	3.2	3.7	8.3							sil			
6-13	BA	7.5	82.1	10.4	0.1	0.1	0.4	0.8	6.1							si			
13-31	Bt ₁	4.2	74.2	21.6	0	0	0.1	0.1	4.0							sil			
31-40	Bt,	5.3	71.6	23.1	0	0	0	0.1	5.2							sil			
40-57	Bt,	8.3	72.7	19.0	0	0.2	0.1	0.3	7.7							sil			
57-76	Bt₄	6.6	78.9	14.5	0.2	0.3	0.3	0.4	5.4							sil			
76-84	2Bt ₅	8.7	79.8	11.5	0	0.6	0.6	0.5	7.0							si/sil			
84-95	2Bt ₆	7.4	81.4	11.2	0.1	0.5	0.6	0.4	5.8							si/sil			
95-101	2Bt ₇	5.4	76.8	17.8	0	0.1	0.3	0.2	4.8							sil			
	1	рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
57-76	4.32			0.39	2.62	0.07	0.05	3.13	8.75	36	29		7.46	10.6					
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Alford, silt loam (Taxadjunct)

Pedon #: S00KY-111-03-(1-8)

Classification: Fine-silty, mixed, semiactive, mesic Typic Hapludults

Location: Jefferson County, Ky, Louisville West Topographic Quadrangle, southwest of old nut house. Latitude: Longitude:

Parent Material:

Vegetation:

Aspect:

Landscape Position:

Drainage:

Moisture when sampled:

Sampling Date: 07-25-2000

Permeability:

Slope: 18%

Described by: Steve Blanford and Scott Aldridge

Oe—0 to 1 inches; leaf litter.

A— 1 to 6 inches; dark brown (10YR 3/3) silt loam; moderate fine and medium granular structure; very friable; many fine to coarse roots; clear wavy boundary. AB—6 to 12 inches; dark yellowish brown (10YR 4/4) silt loam; moderate fine and medium subangular blocky structure; very friable; common fine to coarse roots; clear wavy boundary.

Bt1—12 to 19 inches; strong brown (7.5YR 4/6) silt loam; moderate medium subangular blocky structure; friable; common fine to coarse roots; common distinct clay films; clear wavy boundary.

Bt2—19 to 33 inches; strong brown (7.5YR 4/6) silt loam; strong fine and medium subangular blocky structure; friable; few fine to coarse roots; common distinct clay films; clear wavy boundary. Bt3—33 to 48 inches; strong brown (7.5YR 5/6) silt loam; moderate fine and medium subangular blocky structure; friable; few fine roots; common distinct clay films; clear wavy boundary.

Bt4—48 to 65 inches; yellowish brown (10YR 5/6) silt loam and loam; weak medium prismatic and weak fine and medium subangular structure; friable; few fine roots; few distinct clay films; clear wavy boundary.

BC—65 to 82 inches; yellowish brown (10YR 5/8) and light yellowish brown (2.5Y 6/4) silt loam; weak fine and medium subangular blocky structure; very friable.

SOIL TYPE	ALFORD (TAXADJUNCT)
LOCATION	JEFFERSON COUNTY, KENTUCKY

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2 <i>A</i>	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	nts
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
1-6	A	21.5	70.1	8.4	0.1	1.2	2.2	4.1	13.9		1					sil			
6-12	AB	12.0	76.9	11.1	0	0	0.1	0.5	11.4		1					sil			
12-19	Bt ₁	8.1	71.2	20.7	0	0.1	0.1	0.2	7.7		1					sil			
19-33	Bt,	13.5	61.7	24.8	0	0.1	0.1	2.1	11.2							sil			
33-48	Bt,	12.5	73.1	14.4	0	0.1	0.1	1.0	11.3							sil			
48-65	Bt	6.0	82.6	11.4	0	0.1	0.1	0.1	5.7		1					si/sil			
65-82+	BC	7.1	80.8	12.1	0	0.1	0.1	0.1	6.8		1					si/sil			
72-82+	BC	4.1	75.6	20.3	0.2	.03	0.3	0.2	3.1							sil			
		рН			E	cchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z		1								
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
48-65	4.19			0.24	1.49	0.05	0.01	1.79	6.05	29	22		6.24	8.03					
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Allegheny, loam

Pedon #: S98KY-011-03-(1-7)

Classification: Fine-loamy, mixed, mesic Typic Hapludults

Location: Bath County, Kentucky; Hillsboro SE Quarter Quad, update sheet 48; about 1.1 miles NW of Kentucky Highway 1602 at Oakley in Bath Co.; about 1 mileW/SW of the confluence of Indian Cr. and the Licking R. and about 600 feet north of the Licking River.

Parent Material: high level fluvial deposits of silt, sand, and gravel

Vegetation: fescue, ironweed, ladino clover, Lespedeza, crabgrass

Landscape Position: old upland terraces

Drainage:

Moisture when sampled: moist

Sampling Date: 08/14/98

Permeability:

Slope: 5%

Described by: D. Hines and S. Jacobs

Ap—0 to 9 inches (0 to 23 cm); brown (10YR 4/3) loam; weak fine granular structure; friable; many fine roots; slightly acid; clear smooth boundary.

Bt1—9 to 15 inches (23 to 38 cm); yellowish brown (10YR 5/4)loam; weak medium subangular blocky structure; firm; common fine and few medium roots; few faint clay films on ped surfaces; slightly acid; gradual smooth boundary.

Bt2—15 to 39 inches (38 to 99 cm); yellowish brown (10YR 5/4) loam; moderate medium subangular blocky structure; firm; few fine and medium roots; many faint clay films on ped surfaces; very strongly acid; gradual smooth boundary. Bt3—39 to 48 inches (99 to 122 cm); yellowish brown (10YR 5/6) sandy clay loam; weak platy structure; friable; common distinct clay films on ped surfaces; very strongly acid; gradual smooth boundary.

BC—48 to 56 inches (122 to 143 cm); yellowish brown (10YR 5/6) loamy sand; medium platy and single grain structure; friable; 1 percent rounded sandstone pebbles; few distinct clay bridges on sand grains; very strongly acid; clear smooth boundary.

C1—56 to 72 inches (142 to 183 cm); strong brown (7.5YR 5/6) loamy sand; single grain; friable; common clay nodules or lamellae present; very strongly acid; clear smooth boundary.

C2—72 to 79 inches (183 to 201 cm); yellowish brown (10YR 5/6) sandy clay loam; massive; friable; very strongly acid.

SOIL TYPE.			.BATH COU	ALLEG UNTY, KENT	HENY UCKY	PEDON # GENERA	‡ L METHOD	S	S9	8KY-011-0 1A1 1A2 1	003-(1-7) B1B 2A1								57
									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	42	3B1a
			Total				Sand			S	Silt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-9	Ар	36.0	50.8	13.2	0.4	1.4	11.7	15.6	6.9							sil/l			
9-15	Bt ₁	31.1	55.1	13.8	0.3	1.6	9.4	13.4	6.4							sil			
15-39	Bt,	33.5	42.5	24.0	0.7	1.4	11.0	13.7	6.7							I			
39-48	Bt ₃	52.8	23.4	23.8	0.4	2.6	19.4	21.9	8.5							scl			
48-56	BČ	63.5	14.2	22.3	2.1	5.2	35.5	15.3	5.4							scl			
56-72	C,	67.6	4.3	28.1	1.0	7.9	48.8	8.1	1.8							scl			
72-79	С,	61.7	15.5	22.8	2.7	7.7	29.6	13.9	7.8							scl			
		pH			E	kchangeabl	e Bases (5A	1)		Base Sa	aturation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
	8C1a	8C1c	8D7	6N2z Ca	602z Mg	602z K	6P2z Na	5B1a TEB	5A1z CEC			H+AI	EA	sc	1		Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						M	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						-
Horizon				Sand	+ Silt				ļ					Clay					
	Q	F	MI	К	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Allegheny, silt loam Aspect: Landscape Position: Stream terrace Pedon #: \$99KY-065-03-(1-5) Drainage: Classification: Fine-loamy, mixed, semiactive, mesic Moisture when sampled: Typic Hapludults Location: Estill Co., 1.25 miles southeast of Irvine on stream Sampling Date: 6/15/99 terrace of Kentucky River, Irvine topographical guadrangle. Permeability: Latitude: 37° 38' 53"; Longitude: 83° 52' 15" Parent Material: Alluvium of Pennsylvanian and Missis-Slope: 2% sippian sandstones, siltstones, and shales. Described by: JDM Vegetation: Pasture

Ap—0 to 10 inches; brown (10YR 4/3) silt loam; weak fine granular structure; very friable; many fine roots; slightly acid; clear smooth boundary.

Bt1—10 to 22 inches; strong brown (10YR 4/3) silt loam; moderate medium subangular blocky structure; very friable; few fine roots; few fine tubular pores; common faint organoargillans on surfaces of peds; moderately acid; clear smooth boundary.

Bt2—22 to 32 inches; brown (10YR 5/4) silt loam; moderate medium subangular blocky structure; friable; few fine roots; few distinct brown (10YR 4/4) organoargillans on surface of peds; strongly acid; clear smooth boundary. Bt3—32 to 38 inches; yellowish brown (10YR 5/4) silty clay loam; moderate medium subangular blocky structure; friable; very few fine roots; common distinct dark yellowish brown (10YR4/4) organoargillans on faces of peds; strongly acid; clear smooth boundary.

Bt4—38 to 60 inches; yellowish brown (10YR 5/6) silty clay loam; weak coarse subangular blocky structure; friable; very few very fine roots; few faint organoargillans on faces of peds; moderately acid; clear smooth boundary.

BC—60 to 80 inches; yellowish brown (10YR 5/6) clay loam; weak coarse subangular blocky structure; friable; very few very fine roots; moderately acid.

SOIL TYPE			ESTILL COU	ALLEG JNTY, KENT	HENY UCKY	PEDON : GENERA	# L METHOD	S		99KY-065 1A1 1A2 1	-03-(1-4) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2	A2	3B1a
			Total		l I		Sand			9	Silt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-10	Ap	28.1	56.8	15.1	0.1	0.3	1.8	7.4	18.5							sil	1		
10-22	Bt,	38.7	41.4	19.9	0	0.1	0.4	12.3	25.9		1			1		1			
22-32	Bt ₂	45.8	35.2	19.0	0	0.1	0	13.8	31.9		1			1		1			
32-38	Bt.	37.9	42.6	19.5	0	0	0.1	11.5	26.3							1			
	,,	Ha			E	xchangeab	le Bases (5A	(1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
		· · · · · · · · · · · · · · · · · · ·		6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Ma	К	Na	TEB	CEC			H+AI	EA	sc			Organic		P Brav
Depth	(1:1)	(1:1)	SMP	mea/	mea/	mea/	mea/	mea/	mea/	5C1	5C3	mea/	mea/	mea/	Fe ₂ O ₂	CaCO.	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
60-80	4.34			1.03	0.44	0.08	0.01	1.56	8.04	19	14		9.85	11.41		i •		<u> </u>	<u> </u>
	1	1	1	1		M	ineralogica	Analysis	Estimated F	ercentage	s in Various	Size Fractio	ns	1	1			1	1
Horizon	I			Sand	+ Silt			,,		<u> </u>				Clav					
	0	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K K	MI	0	GI	GO	F
							1			•	1			1					† ·

Allegheny, fine sandy loam

Pedon#: S01KY-129-02-(1-5)

Classification: Fine-loamy, semiactive, mixed, mesic Typic Hapludults

Location: Lee Co., north of confluence of North Fork and Middle Fork of Kentucky River; Beattyville topographic quadrangle. Latitude: 37° 35' 25"; Longitude: 83° 40' 15" Parent Material: Alluvium of Pennsylvanian sandstones, siltstones, and shales. Vegetation: Fescue

Aspect:

Landscape Position: Stream terrace

Drainage:

Moisture when sampled: Sampling Date: 02/02/01

Permeability:

ones, Slope: 2% Described by: JDM

> Ap—0to6inches; brown (10YR4/4) fine sandy loam; weak fine granular structure; very friable; common fine roots; slightly acid; abrupt wavy boundary.

> Bt1—6 to 15 inches; strong brown (7.5YR 5/8) loam; weak medium subangular blocky structure; friable; few fine and medium roots; few fine tubular pores; few faint argillans on surfaces of peds; moderately acid; clear smooth boundary.

Bt2—15 to 24 inches; strong brown (7.5 YR 5/8) loam; moderate medium subangular blocky structure; friable; very few fine roots; faint sand bridging between grains; moderately acid; clear smooth boundary.

Bt3—24 to 36 inches; dark yellowish brown (10YR 4/4) sandy loam; weak coarse subangular blocky structure; friable; very few very fine roots; strongly acid; clear smooth boundary.

CB—36 to 60 inches; strong brown (7.5YR 5/8) sandy loam; loose; single grain; strongly acid.

SOIL TYPE. LOCATION			LEE COU	ALLEG JNTY, KENT	HENY UCKY	PEDON # GENERA	L METHOD	S		01KY-129 1A1 1A2 1	-02-(1-5) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	nts
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-6	Ap	63.1	20.9	16.0	0.2	0.4	4.3	37.1	21.1							sl			
6-15	Bt,	61.4	19.7	18.9	0.1	0.1	1.9	36.7	22.6		1					sl/scl			
15-24	Bt,	61.8	17.8	20.4	0	0.2	1.7	36.1	23.8		1					scl/sl			
24-36	Bt,	68.1	15.5	16.4	0	0	1.9	42.3	23.9		1					sl			
36-60	CB	72.8	14.2	13.0	0	0	2.7	44.9	25.2		1					sl			
		pН			E	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
Depth in	8C1a (1:1) H,O	8C1c (1:1) KCl	8D7 SMP Buff.	Ca meq/ 100gm	Mg meq/ 100gm	K meq/ 100gm	Na meq/ 100gm	TEB meq/ 100gm	CEC meq/ 100gm	5C1 Pct	5C3 Pct	H+Al meq/ 100 gm	EA meq/ 100gm	SC meq/ 100gm	Fe ₂ O ₃ Pct	CaCO ₃ Eq. Pct	Organic Matter Pct	K ppm	P Bray No.1 ppm
				0.11	0.24	0.16	0.01	0.52	4.60	11	8		6.22	6.74		-			
					İ						1								
						Mi	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt					-				Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Alticrest, sandy loam

Pedon #: KY-94-133-01-(1-3)

Classification: Coarse-loamy, siliceous, semiactive, mesic, Typic Dystrudepts

Location: Letcher County, Whitesburg Topographic Quadrant; 400' NE of KY 119, 1000' W of Presley House Branch on Pine Mountain. x: 2,860,580, y: 281,800

Parent Material: Residuum of Lower Pennsylvanian Lee Sandstone

Vegetation: Chestnut oak and Virginia pine

Landscape Position: Ridge top

Drainage:

Moisture when sampled:

Sampling Date: 7/21/94

Permeability:

Slope: 30 percent

Described by: P.S. Aldridge

A—0 to 3 inches; dark grayish brown (10YR 4/2) sandy loam; weak fine granular structure; very friable; common fine and medium roots; 5 percent sandstone channers; extremely acid; clear smooth boundary.

Bw1—3 to 13 inches; yellowish brown (10YR 5/6) sandy loam; weak fine subangular structure; friable; common fine

and medium and few coarse roots; 5 percent sandstone channers; strongly acid; clear smooth boundary.

Bw2—13 to 25 inches; yellowish brown (10YR 5/8) channery sandy loam; weak medium subangular structure; friable; few fine and medium roots; 15 percent sandstone channers; strongly acid; clear smooth boundary.

Cr—25 to 30 inches; weathered sandstone bedrock; abrupt smooth boundary.

R—30 inches; sandstone bedrock.

SOIL TYPE		LE	TCHER COU	ALTIC JNTY, KENT	REST UCKY	PEDON # GENERA	# L METHOD	S	S9	4KY-133-0 1A1 1A2 1	01-(1-3) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth	Horizon	Sand (2-0.05)	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural	>2 Pct	Pct of	Pct of
0-3		65.0	23.0	12.0	20	10.2	29.5	21.1	22	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	class	2rtt	\70	0iiiii</td
3-13	Bw/	58.2	25.0	12.0	0.5	2.5	29.5	21.1	2.2							si cl			
13-25	Bw/	62.0	20.0	15.6	0.5	2.5	25.9	30.7	3.0							si cl			
15 25	0002	nH	22.7	15.0	– – – –	vchangeabl	A Rases (54	1)	5.0	Rase Sa	turation	661x	6H1a	543a		6N7	6 4 1a	6057	656
				6N27	6027	6027	6P27	581a	5417	Buse su		0012	onna	5/150	1	0.17	0/114	0052	050
	8C1a	8C1c	8D7	Ca	Ma	к	Na	TEB	CEC			H+AI	FA	sc			Organic		P Brav
Depth	(1:1)	(1:1)	SMP	meg/	meg/	meg/	meg/	meg/	mea/	5C1	5C3	meg/	mea/	meg/	Fe O	CaCO	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
											1					-			
	•					M	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns		•	•			
Horizon				Sand	+ Silt			•						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bw1	98	2																	
Bw2	100																		

Ashton, silt loam

Pedon #: S90KY-135-15(1-6)

Classification: Fine-silty, mixed, active, mesic, Mollic Hapludalfs

Location: Lewis County, Kentucky; Atlas sheet 3B; about 0.5 mile northeast of the junction of KY-57 and KY-8 at Concord, about 480 feet north of KY-8, about 350 feet north of the Chesapeake and Ohio railroad tracks, and 400 feet south of the Ohio River. x: 2,210,000 feet; Latitude: 38° 41′ 48″; y: 435,800 feet; Longitude: 83° 30′ 40″

Parent Material: Mixed alluvium of the Ohio River floodplain, Quaternary system

Vegetation: Orchardgrass, hayfield

Landscape Position: Terrace

Drainage:

Moisture when sampled: Moist

Sampling Date: 6/27/90

Permeability:

Slope: 1%

Described by: S. Jacobs and D. Dotson

Ap—0 to 10 inches (0 to 25 cm); dark brown (10YR 3/3) silt loam; weak fine granular structure; very friable; many fine roots; moderately alkaline; clear smooth boundary.

Bt1—10 to 15 inches (25 to 38 cm); brown (7.5YR 4/4) silt loam; moderate fine and medium subangular blocky structure; friable; common fine roots; many faint clay films on ped surfaces; few fine charcoal pieces; moderately alkaline; clear smooth boundary.

Bt2—15 to 28 inches (38 to 71 cm); brown (7.5YR 4/4) silty clay loam; moderate medium subangular blocky structure; firm; few fine roots; many faint clay films on ped surfaces; commonfine charcoal pieces; moderately alkaline; gradual smooth boundary. Bt3—28 to 40 inches (71 to 102 cm); brown (7.5YR4/4) silty clay loam; moderate medium columnar structure parting to moderate medium subangular blocky; firm; few fine roots; many distinct clay films on ped surfaces; few fine charcoal pieces; neutral; gradual smooth boundary.

Bt4—40 to 51 inches (102 to 130 cm); brown (7.5YR 4/4) silt loam; moderate medium subangular blocky structure; friable; few fine roots; many faint clay films on ped surfaces; medium acid; gradual smooth boundary.

Bt5—51 to 80 inches (130 to 152 cm); brown (7.5YR 4/4) silt loam; weak fine and medium subangular blocky structure; friable; few fine roots; many faint clay films on ped surfaces; medium acid.

SOIL TYPE	ASHTON				HTON	PEDON #													
LOCATION	••••••		LEWIS COU	JNTY, KENT	UCKY	GENERA	L METHOD	S		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	42	3B1a
			Total				Sand			S	silt			Sand	VFS Plus]	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-10	Ар	29.2	53.0	17.8	0.2	0.2	0.2	5.9	22.7							sil			
10-15	Bt ₁	18.2	55.5	26.3	0.1	0	0.1	3.2	14.8							sil/sicl			
15-28	Bt ₂	12.4	53.7	33.9	0.1	0.1	0.1	1.4	10.7							sicl			
28-40	Bt ₃	21.5	48.3	30.2	0	0.1	0	3.1	18.3							cl/sicl			
40-51	Bt ₄	34.8	41.5	23.7	0	0	0.1	5.9	28.8							I			
51-60	Bt _s	27.5	50.2	22.3	0	0.1	0.1	4.0	23.3							sil/l			
		рН			E	xchangeab	le Bases (5A	.1)		Base Sa	aturation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,0	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogica	l Analysis—	Estimated F	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	F MI K CL INT RE						SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Atkins, silty clay loam

Pedon #: S99KY-011-01-(1-6)

Classification: Fine, mixed, active, acid, mesic Fluvaquentic Endoaquepts

Location: Bath County, Kentucky; Salt Lick NW Quarter Quad, update sheet 23T; about 1.8 miles S of junction of US-60 and Kentucky Highway 211 in Bath Co.; about 0.5 mile E of Kentucky Highway 211 and Mud Lick Road; about 920 feet NE of Kentucky Highway 211; and about 300 feet W of Salt Lick creek.

Parent Material: Alluvium

Vegetation: Cornfield—stubble and Johnson grass

Landscape Position: Flood plain

Drainage:

Moisture when sampled: moist

Sampling Date: 12/03/98

Permeability:

Slope: 1%

Described by: D. Hines and S. Jacobs

A1—0 to 2 inches (0 to 5 cm); light olive brown (2.5Y 5/3) silty clay loam; common fine prominent strong brown (7.5YR 5/6) redox accumulations; weak medium granular structure; friable; many fine and very fine roots; 2 percent rounded quartz pebbles; 1 percent black Fe/Mn nodules; moderately acid; clear smooth boundary.

A2—2 to 6 inches (5 to 15 cm); light olive brown (2.5Y (5/3) silty clay loam; common medium prominent yellowish red (SYR4/6) and few medium prominent reddish brown (2.5YR 4/4) redox accumulations; weak fine subangular blocky structure; friable; manyfine roots; 2 percent rounded quartz pebbles; 1 percent black Fe/Mn nodules; moderately acid; gradual smooth boundary.

Bg1—6 to 16 inches (15 to 41 cm); light brownish gray (2.5Y 6/2) silty clay loam; many medium and coarse prominent strong brown (7.5YR 5/8) redox accumulations; weak medium subangular blocky structure; firm; common fine roots; 2 percent rounded quartz pebbles; 1 percent black Fe/Mn nodules; very strongly acid; gradual wavy boundary.

Bg2—16 to 26 inches (41 to 66 cm); light brown gray (10YR 6/2) silty clay loam; many medium and coarse distinct

yellowish brown (10YR 5/8) redox accumulations; weak medium subangular blocky structure; firm; few fine roots; 3 percent black Fe/Mn nodules 2 to 10 mm in size; very strongly acid; gradual smooth boundary.

C1—26 to 45 inches (66 to 114 cm); pale olive (5Y 6/3) silty clay; many fine and medium prominent strong brown (7.5YR5/8) redoxaccumulations, many medium and coarse distinct gray (2.5Y 6/1) and light brownish gray (2.5Y 6/2) in ped and exterior ped coats; massive; firm; few fine roots; 20 percent black Fe/Mn modules 10 to 40 mm in size; very strongly acid; gradual smooth boundary.

C2—45 to 55 inches (114 to 140 cm); gray (5Y 6/1) silty clay; many medium prominent strong brown (7.5YR 5/6) redox accumulations and common medium faint pale olive (5Y 6/3) redox depletions; massive; firm; few fine 10 percent black Fe/Mn nodules; very strongly acid.

SOIL TYPE	ATKINS	PEDO
LOCATION	BATH COUNTY, KENTUCKY	GENI

		Particle Size Class and Particle Diameter (mm)																	
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very		1]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-2	A ₁	21.4	49.4	29.2	0.7	1.9	5.8	6.2	6.8							cl/sicl			
2-6	Α,	20.8	52.5	26.7	0.5	1.6	5.2	6.4	7.1							sil/cl/sicl			
6-16	Bg ₁	19.6	44.2	36.2	0.4	0.7	4.4	6.3	7.8							sicl/cl			
16-26	Bg,	16.7	41.0	42.3	1.0	1.6	3.4	4.6	6.1							sic/sicl			
26-45	C,	32.6	37.0	30.4	6.3	7.0	7.2	5.7	6.4							cl			
45-55	С,	31.0	44.7	24.3	4.9	6.2	6.6	6.2	7.1						1				
		pН			E	xchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a	1	6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z]				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
		Mineralogical Analysis—Estimated Percent									s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Berea, silt loam (Taxadjunct)

Pedon #:

Classification: Fine-silty, mixed, semiactive, mesic Aquic Hapludults

Location: Madison Co., KY near Moberly on the EKU Meadowbrook Farm, near the entrance.

Parent Material: Residuum

Vegetation: Landscape Position: Upland Drainage: Moisture when sampled: Sampling Date: Sept., 1999 Permeability: Slope: 0-2% Described by: A.D. Karathanasis and Bill Craddock Ap—0to6in.;Brown(10YR4/3)siltloam/silt;weakgranular structure; friable; common faint redox depletions and concentrations; clear boundary.

Btx1—6 to 12 in.; Yellowish brown (10YR 5/4) silt loam; moderate prismatic structure; firm; common distinct redox depletions and concentrations; clear boundary.

Btx2—12 to 19 in.; Yellowish brown (10YR 5/4) silty clay loam/silt loam; moderate prismatic structure; firm; common distinct redox depletions and concentrations; clear boundary. Bt1—19 to 27 in.; Yellowish brown (10YR 5/4) silty clay loam/silt loam; moderate subangular blocky structure; friable; common distinct redox depletions and concentrations; clear boundary.

Bt2—27 to 34 in.; Yellowish brown (10YR 5/4) silty clay; moderate subangular blocky structure; friable; common distinct redox depletions and concentrations; abrupt boundary.

Cr—34+ in.

SOIL TYPE	BEREA (TAXADJUNCT)	PEDON #	
LOCATIONMAD	ISON COUNTY, KENTUCKY	GENERAL METHODS	1A1 1A2 1B1B 2A1

		Particle Size Class and Particle Diameter (mm)																	
								3/	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-6	Ар	10.1	80.3	9.6	1.3	3.1	2.6	1.7	1.4							si/sil			
6-12	Btx ₁	5.8	74.2	20.0	1.1	1.6	1.3	0.9	0.9							sil			
12-19	Btx,	2.8	68.2	29.0	0.5	0.6	0.3	0.5	0.9							sicl/sil			
19-27	Bt,	1.7	70.4	27.9	0.1	0.2	0.2	0.4	0.8							sicl/sil			
27-34	Bt,	1.6	50.9	47.5	0.1	0.2	0.2	0.4	0.7							sic			
	_	pН			E	kchangeab	le Bases (5A	.1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-6	4.91																1.99		
6-12	4.88																		
12-19	4.39																		
19-27	4.42																		
27-34	4.46																		
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt				Clay										
	Q	F	MI K CL INT RE						SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
							1												

Berks, channery silt loam

Pedon #: \$90KY-135-05(1-5)

Classification: Loamy-skeletal, mixed, active, mesic Typic Dystrudepts

Location: Lewis County, Kentucky; Atlas sheet 35A; about 2 miles northeast of the junction of KY-559 and KY-344 at Petersville, about 0.3 mile south of the junction of KY-344 and Bee Branch Road, about 500 feet northwest of Bee Branch Road. x: 2,225,750 feet; Latitude: 38° 27' 11"; y: 347,700 feet; Longitude: 83° 27' 23"

Parent Material: Residuum of sandstone, siltstone and shale of the Borden Formation, Mississippian Geologic System

Vegetation: White oak, hickory, sugar maple, black oak woodland

Landscape Position: Side slope

Drainage:

Moisture when sampled: Moist

Sampling Date: 1/2/90

Permeability:

Slope: 29%

Described by: S. Jacobs and D. Dotson

A-0 to 3 inches (0 to 8 cm); dark brown (10YR 4/3) channery silt loam; weak fine granular structure; very friable; many fine and medium roots; 18% sandstone channers; very strongly acid; clear smooth boundary.

Bw1-3 to 8 inches (8 to 20 cm); brown (10YR 5/3) channery loam; weak fine subangular blocky structure; friable; common fine and medium roots, few coarse roots; 30% sandstone channers and stones; common faint silt coats on ped surfaces and on coarse fragments; very strongly acid; gradual smooth boundary.

Bw2-8 to 16 inches (20 to 41 cm); yellowish brown (10YR 5/4) very channery loam; weak medium subangular blocky structure; friable; few fine and medium roots; 50% sandstone channers and stones; common faint silt coats on ped surfaces and coarse fragments; very strongly acid; clear wavy boundary.

Bw3—16 to 25 inches (41 to 64 cm); yellowish brown (10YR 5/4) extremely channery loam; weak fine and medium subangular blocky structure; friable; few fine roots; 65% sandstone channers and stones; common faint silt coats on ped surfaces and coarse fragments; very strongly acid; abrupt wavy boundary.

R—25 inches (64 cm); unweathered fine grained sandstone in 6 to 20 inch thick layers.

SOIL TYPE	BERKS PEDON #									0KY-135-0	005-(1-4)								
LOCATION			LEWIS COU	JNTY, KENT	UCKY	GENERA	L METHOD	5		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1]	2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	А	35.2	55.5	9.3	5.8	7.4	6.6	5.2	10.2							sil			
3-8	Bw ₁	22.6	67.2	10.2	4.1	2.2	1.6	2.5	12.2		1					sil			
8-16	Bw ₂	23.4	67.9	8.7	5.9	3.2	3.2 1.8 2.4 10.1												
16-25	Bw ₃	36.8	53.2	10.0	12.2	6.2	3.4	3.7	11.3							sil			
		рН			E	changeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
I F				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO ₃	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon		Sand + Silt												Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
					1	i	1				1			1	1	1	1		1

Blairton, silt loam (Taxadjunct)

Pedon #: S90KY-135-01-(1-4)

Classification: Fine-loamy, mixed, active, mesic, Typic Hapludults

Location: Lewis County, Kentucky; Atlas sheet 35A; about 2 miles northeast of the junction of KY-559 and KY-344 at Petersville, about 0.3 mile south of the junction of KY-344 and Bee Branch Road, about 500 feet northwest of Bee Branch Road. Latitude: 38° 27' 11"; Longitude: 83° 27' 23"; x: 2,225,750 feet; y: 347,700 feet

Parent Material: Residuum weathered from the shale member of the Borden Formation, Mississippian Geologic System

Vegetation: Hickory, white oak, sugar maple, flowering dogwood woodland

Landscape Position: Side slope below bench Drainage:

Moisture when sampled: Moist

Sampling Date: 1/2/90

Permeability:

Slope: 82%

Described by: S. Jacobs and D. Dotson

A—0 to 3 inches (0 to 8 cm); dark brown (10YR 3/3) channery silt loam; weak fine granular structure; very friable; many fine roots, few medium and coarse roots; 15% sandstone gravels and channers; very strongly acid; clear smooth boundary.

Bt1—3 to 14 inches (8 to 36 cm); yellowish brown (10YR5/6) channery loam; moderate fine and medium subangular blocky structure; friable; common fine roots, few medium and coarse roots; 25% sandstone channers; very strongly acid; clear smooth boundary. 2Bt2—14 to 25 inches (36 to 64 cm); reddish brown (5YR 4/4) channery silty clay loam; common fine and medium prominent pale olive (5Y 6/3) mottles; moderate fine subangular blocky structure; firm; common fine and medium roots; 30% shale fragments; very strongly acid; gradual smooth boundary.

2Cr—25 to 37 inches (64 to 94 cm); pale olive (5Y 6/3) very channery silty clay; firm; few fine roots; 40% shale fragments; very strongly acid; gradual smooth boundary.

R—37 inches (94 cm); soft layered pale olive (5Y 6/3) shale.

SOIL TYPE	BLAIRTON (TAXADJUNCT)
LOCATION	LEWIS COUNTY, KENTUCKY

PEDON #S90KY-135-001-(1-4) GENERAL METHODS1A1 1A2 1B1B 2A1

			Particle Size Class and Particle Diameter (mm)																
								3	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	A	31.0	58.4	10.6	4.9	6.7	6.2	4.7	8.5							sil			
3-14	Bw ₁	21.2	63.8	15.0	3.3	2.8	2.2	2.8	10.1							sil			
14-25	2Bt	13.7	51.5	34.8	3.4	4.7	3.2	1.4	1.0							sil			
25-37	2Cr	1.5	57.5	41.0	0.1	0.2	0.2	0.2	0.8							sic/sicl			
	1			1					1				4114						
		pН			E	cchangeab	le Bases (5A	.1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
		рН		6N2z	602z	changeab 602z	le Bases (5A 6P2z	1) 5B1a	5A1z	Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
	8C1a	рН 8С1с	8D7	6N2z Ca	E 602z Mg	cchangeabl 602z K	le Bases (5A 6P2z Na	1) 5B1a TEB	5A1z CEC	Base Sa	turation	6G1x H+Al	6H1a EA	SA3a SC		6N7	6A1a Organic	60sz	6S6 P Bray
Depth	8C1a (1:1)	рН 8С1с (1:1)	8D7 SMP	6N2z Ca meq/	E: 602z Mg meq/	cchangeabl 602z K meq/	le Bases (5A 6P2z Na meq/	1) 5B1a TEB meq/	5A1z CEC meq/	Base Sa 5C1	turation 5C3	6G1x H+Al meq/	6H1a EA meq/	SC meq/	Fe,O,	6N7 CaCO	6A1a Organic Matter	60sz K	656 P Bray No.1
Depth in	8C1a (1:1) H,O	рН 8C1c (1:1) КСІ	8D7 SMP Buff.	6N2z Ca meq/ 100gm	E: 602z Mg meq/ 100gm	cchangeabl 602z K meq/ 100gm	le Bases (5A 6P2z Na meq/ 100gm	1) 5B1a TEB meq/ 100gm	5A1z CEC meq/ 100gm	Base Sa 5C1 Pct	5C3 Pct	6G1x H+Al meq/ 100 gm	6H1a EA meq/ 100gm	SA3a SC meq/ 100gm	Fe ₂ O ₃ Pct	6N7 CaCO ₃ Eq. Pct	6A1a Organic Matter Pct	60sz K ppm	6S6 P Bray No.1 ppm
Depth in	8C1a (1:1) H ₂ O	рН 8C1c (1:1) KCl	8D7 SMP Buff.	6N2z Ca meq/ 100gm	E: 602z Mg meq/ 100gm	kchangeab 602z K meq/ 100gm	le Bases (5A 6P2z Na meq/ 100gm	1) 5B1a TEB meq/ 100gm	5A1z CEC meq/ 100gm	Base Sa 5C1 Pct	5C3 Pct	6G1x H+Al meq/ 100 gm	6H1a EA meq/ 100gm	SA3a SC meq/ 100gm	Fe ₂ O ₃ Pct	6N7 CaCO ₃ Eq. Pct	6A1a Organic Matter Pct	60sz K ppm	6S6 P Bray No.1 ppm
Depth in	8C1a (1:1) H ₂ O	рН 8С1с (1:1) КСІ	8D7 SMP Buff.	6N2z Ca meq/ 100gm	E 602z Mg meq/ 100gm	kchangeabl 602z K meq/ 100gm M	le Bases (5A 6P2z Na meq/ 100gm ineralogica	1) 5B1a TEB meq/ 100gm I Analysis—	5A1z CEC meq/ 100gm Estimated P	Base Sa 5C1 Pct ercentage:	turation 5C3 Pct s in Various	6G1x H+Al meq/ 100 gm Size Fractio	6H1a EA meq/ 100gm ns	SA3a SC meq/ 100gm	Fe ₂ O ₃ Pct	GN7 CaCO ₃ Eq. Pct	6A1a Organic Matter Pct	60sz K ppm	656 P Bray No.1 ppm
Depth in Horizon	8C1a (1:1) H ₂ O	рН 8С1с (1:1) КСІ	8D7 SMP Buff.	6N2z Ca meq/ 100gm Sand	E: 602z Mg meq/ 100gm + Silt	kchangeabl 602z K meq/ 100gm M	le Bases (5A 6P2z Na meq/ 100gm ineralogica	1) 5B1a TEB meq/ 100gm Analysis—	5A1z CEC meq/ 100gm Estimated P	Base Sa 5C1 Pct ercentage	5C3 Pct s in Various	6G1x H+Al meq/ 100 gm Size Fractio	6H1a EA meq/ 100gm ns	SA3a SC meq/ 100gm Clay	Fe ₂ O ₃ Pct	GN7 CaCO ₃ Eq. Pct	6A1a Organic Matter Pct	60sz K ppm	656 P Bray No.1 ppm
Depth in Horizon	8C1a (1:1) H ₂ O	рН 8С1с (1:1) КСІ F	8D7 SMP Buff.	6N2z Ca meq/ 100gm Sand	E: 602z Mg meq/ 100gm + Silt	kchangeabl 602z K meq/ 100gm M	le Bases (5A 6P2z Na meq/ 100gm ineralogica	1) 5B1a TEB meq/ 100gm I Analysis—	5A1z CEC meq/ 100gm Estimated P	Base Sa 5C1 Pct ercentage:	5C3 Pct s in Various	6G1x H+Al meq/ 100 gm Size Fractio	6H1a EA meq/ 100gm ns	SA3a SC meq/ 100gm Clay K	Fe ₂ O ₃ Pct	GN7 CaCO ₃ Eq. Pct	6A1a Organic Matter Pct	60sz K ppm GO	656 P Bray No.1 ppm

Boonesboro, silt loam (Taxadjunct)

Pedon #: S93KY-239-08-(1-2) Classification: Fine, mixed, mesic Typic Argiudolls Location: Woodford Co., Ky Parent Material: Alluvium Vegetation: Fescue, white clover pasture Landscape Position: Floodplain Drainage: Moisture when sampled: Moist Sampling Date: 7/20/93 Permeability: Slope: 1%

Described by: S. Jacobs

A—0 to 14 inches (0 to 36 cm); very dark grayish brown (10YR 3/2) silt loam; weak medium subangular blocky structure parting to medium fine granular; friable; many fine roots; neutral; gradual smooth boundary.

Bt—14 to 24 inches (36 to 61 cm); dark brown (10YR 3/3) silty clay; moderate fine and medium subangular blocky structure; firm; common fine roots; common distinct clay films on ped faces; 10 percent chert fragments; neutral; abrupt smooth boundary.

R—24 inches (61 cm); hard limestone bedrock.

SOIL TYPE	BOONESBORO (TAXADJUNCT)	PEDON #
LOCATION	WOODFORD COUNTY, KENTUCKY	GENERA

T)	PEDON #	.S93KY-239-008-(1-2)
Y	GENERAL METHODS	1A1 1A2 1B1B 2A1

			Particle Size Class and Particle Diameter (mm)																
								3/	A1								2/	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-14	A	21.7	55.9	22.4	2.9	5.6	5.9	4.9	2.4							sil			
14-24	Bt ₁	21.5	43.1	35.4	2.9	5.5	5.4	4.9	2.8							cl/sicl			
		pH Exchangeable Bases (5A1) Base Saturation 6G1x 6H1a 5A3a												6N7	6A1a	60sz	6S6		
		6N2z 602z 602z 5B1a 5A1z 6N2z 602z 602z 6P2z 5B1a 5A1z																	
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-14	6.20		6.48														6.35	211.5	100+
14-24	6.42		6.60														3.00	180.5	100+
	·	Mineralogical Analysis—Estimated Percentages in Various Size Fractions											·						
Horizon		Sand + Silt Clay																	
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Brownsville, channery silt loam

Pedon #: S90KY-135-02(1-7)

Classification: Loamy-skeletal, mixed, active, mesicTypic Dystrudepts

Location: Lewis County, Kentucky; Atlas sheet 27B; about 2.3 miles southeast of the confluence of Town Branch and Kinniconick Creek near Tannery Church, about 2.0 miles west of the bridge across Mill Branch on Kinniconick Road, about 500 feet north of Mill Branch on the south facing sideslope. Latitude: 38° 31'09''; Longitude: 83° 16'04''; x: 2,280,600 feet; y: 377,900 feet

Parent Material: Colluvial material from siltstone, shale, and sandstone of the Borden Formation, Mississippian Geologic System

 $\label{eq:vegetation:} {\ensuremath{\mathsf{Vegetation:}}} {\ensuremath{\mathsf{Scarletoak}}, white oak, yellow-poplar, hickory, woodland}$

Landscape Position: Middle sideslope

Drainage:

Moisture when sampled: Moist

Sampling Date: 1/11/90

Permeability:

Slope: 45%

Described by: S. Jacobs and D. Dotson

A—0 to 4 inches (0 to 10 cm); dark brown (10YR 4/3) channery silt loam; weak fine granular structure; very friable; many fine and medium roots, few coarse roots; 25% sandstone gravels and channers; many faint silt coats on ped surfaces and on coarse fragments; very strongly acid; clear way boundary.

Bw1—4 to 11 inches (10 to 28 cm); light yellowish brown (10YR 6/4) very channery loam; weak fine subangular blocky structure; friable; common fine and medium roots; 35% sandstone gravels and channers; many faint silt coatings on ped surfaces and on coarse fragments; very strongly acid; gradual smooth boundary.

Bw2—11 to 21 inches (28 to 53 cm); light yellowish brown (10YR6/4) very channery loam; weak medium subangular blocky structure; friable; common fine and medium roots, few coarse roots; 50% sandstone gravels and channers; many faint silt coatings on ped surfaces and on coarse fragments; very strongly acid; gradual wavy boundary.

Bw3—21 to 27 inches (53 to 69 cm); yellowish brown (10YR5/8) very channery loam; weak medium subangular blocky structure; friable; few fine and medium roots; 60% sandstone gravels and channers; many faint silt coats on ped surfaces and on coarse fragments; very strongly acid; clear wavy boundary.

Bw4—27 to 43 inches (69 to 109 cm); yellowish brown (10YR 5/6) extremely channery loam; weak medium subangular blocky structure; friable; few fine and medium roots; 75% sandstone gravels, channers, and stones; many faint silt coats on ped surfaces and on coarse fragments; very strongly acid.

SOIL TYPE	BROWNSVILLE	PEI
LOCATIONLI	EWIS COUNTY, KENTUCKY	GE

									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-4	A	32.2	62.0	5.8	3.0	3.4	2.9	4.9	18.0							sil			
4-11	Bw ₁	24.8	65.4	9.8	2.2	1.1	0.9	1.3	19.3							sil			
11-21	Bw ₂	27.5	64.1	8.4	3.7	1.8	1.3	1.7	19.0							sil			
21-27	Bw ₃	48.4	40.9	10.7	7.2	4.5	3.1	5.9	27.7										
27-43	Bw ₄	43.3	46.2	10.5	6.9	6.5	4.0	5.3	20.6										
		pH			E	xchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogica	l Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Caneyville, silty clay loam Pedon #: \$94KY-135-55-(1-3)	Landscape Position: Drainage: Moisture when sampled:	A—0 to 3 inches; dark brown (10YR 4/3) silty clay loam; weak fine granular structure; friable; many fine, few me- dium and coarse roots; 10% dolomite fragments; medium acid, gradual smooth boundary.	Bt2—10 to 24 inches; strong brown (7.5YR 5/6) grav- elly clay; moderate medium and coarse subangular and angular blocky structure; very firm; common fine, few medium and coarse to 20% claumic fragments imparty
Classification: Fine, mixed, active, mesic Typic Haplu- dalfs Location: Lewis County, Kentucky Parent Material:	Sampling Date: Permeability: Slope: Described by:	acid; gradual smooth boundary. Bt1—3 to 10 inches; strong brown (7.5YR 4/6) clay; mod- erate medium subangular and angular blocky structure; firm; common fine, few medium and coarse roots; 10% dolomite fragments; many distinct clay films on peds; strongly acid; gradual smooth boundary.	distinct and prominent clay films on peds; neutral; abrupt smooth boundary. R—24 inches; hard dolomite bedrock.
Vegetation:		strongly acia, gradual smooth boundary.	

SOIL TYPE.				CANEY	VILLE	PEDON #	#		S9	4KY-135-0)55-(1-3)								
LOCATION	••••••		LEWIS COU	JNTY, KENT	UCKY	GENERA	L METHOD	S		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	A	24.3	50.7	25.0	1.7	4.6	4.2	4.5	9.3							sil/l/cl			
3-10	Bt ₁	15.1	40.9	44.0	0.5	0.6	0.8	2.1	11.1							sic/c			
10-24	Bt,	11.1	43.0	45.9	0.1	0.3	0.5	1.3	8.9		1					sic			
	-	pН			E	5A3a		6N7	6A1a	60sz	6S6								
			pH Exchangeable Bases (5A1) Base Saturation 6G1x 6H1a 5 6N2z 602z 602z 6P2z 5B1a 5A1z Image: Contraction of the second s																
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	_																		
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt ₁										17			18	38	23	4			
Bt ₂										21			22	28	24	4			1

Caneyville, silt loam (Taxadjunct)	Landscape Position: Drainage: Moisture when sampled:	BA—6 to 11 inches; brown (10YR5/3) and yellowish brown (10YR 5/6) silty clay loam; weak medium subangular blocky structure; friable; common fine roots; neutral; clear smooth boundary.	firm, few f medium a BC—31 to groonish a
Pedon #: S94KY-135-59-(1-7)	Sampling Date:	Bt1—11 to 25 inches; strong brown (7.5YR 5/6) silty clay;	blocky str
Classification: Fine, montmorillonitic, active, mesic Typic	Permeability:	common medium distinct yellowish red (5YR 4/6) mottles;	ments; me
Hapludalfs	Slope:	moderate medium subangular blocky structure; firm;	C—40 to 4
Location: Lewis County, Kentucky	Described by:	medium acid; clear smooth boundary.	yellow (2.5
Parent Material:	Ap—0 to 6 inches; brown (10YR 5/3) silt loam; weak fine	Bt2—25 to 31 inches: vellowish brown (10YR 5/6), dark	clear smo
Vegetation:	granular structure; very friable; many fine roots; abrupt smooth boundary.	reddish brown (5YR 3/3), and light greenish gray (5GY 7/1) silty clay; moderate medium subangular blocky structure;	Cr—47 ind

SOIL TYPE.....CANEYVILLE (TAXADJUNCT)

irm, few fine roots; common distinct clay films on peds; nedium acid; clear smooth boundary.

BC—31 to 40 inches; olive yellow (2.5Y 6/6) and light greenish gray (5GY 7/1) silty clay; weak medium subangular blocky structure; firm; few fine roots; 5% siltstone fragments; medium acid; gradual smooth boundary.

—40 to 47 inches; light greenish gray (5GY 7/1) and olive ellow (2.5Y 6/6) channery silty clay loam; weak thin platy tructure; friable; 25% siltstone fragments; slightly acid; lear smooth boundary.

r—47 inches; soft siltstone bedrock

LOCATION	••••••		LEWIS COU	JNTY, KENT	UCKY	GENERA	L METHOD	5		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2/	2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-6	Ар	39.4	44.8	15.8	1.1	2.0	7.0	21.6	7.7							I			
6-11	BA	25.6	48.4	26.0	0.5	1.1	3.5	13.2	7.3							l/sil/cl			
11-25	Bt ₁	4.7	46.8	48.5	0.4	0.4	0.8	2.0	1.1							sic			
25-31	Bt ₂	2.0	53.4	44.6	0.3	0.4	0.4	0.5	0.4							sic			
31-40	BC	5.0	62.2	32.8	1.1	0.7	0.6	1.1	1.5							sicl			
40-47	C	9.4	64.2	26.4	2.0	1.6	1.5	2.2	2.1							sil/sicl			
47	Cr	14.5	60.7	24.8	4.5	3.6	2.5	2.0	1.9							sil			
		рН			E	changeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						<u>.</u>	<u> </u>				L								
						м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon		_		Sand	+ Silt						I			Clay					
	Q	F	MI	К		INT	RE	CA	SM	V	HIV		INT	K	MI	Q	Gl	GO	F F
Bt ₁									44	31				15	8	2			
Bt ₂							1		21	35			3	8	30	2			1

Caneyville, silt loam	Drainage: Moisture when sampled:	B/A—5 to 9 inches; yellowish brown (10YR 5/4) silt loam; weak medium subangular blocky structure parting to	mottles; moderate medium subangular blocky structure; very firm, few fine, medium and coarse roots; 20% lime-
Pedon #: S94KY-135-60-(1-5)	Sampling Date:	weak fine granular; friable; common fine and medium, few coarse roots; 3 to 5% chert fragments; strongly acid;	stone channers; many distinct clay films on peds; mildly alkaline; clear wavy boundary.
Classification: Fine, mixed, active, mesic Typic Haplu-	Permeability:	clear smooth boundary.	Bt3—24 to 30 inches; dark yellowish brown (10YR 4/6)
dalfs	Slope:	Bt1—9 to 12 inches; yellowish brown (10YR 5/6) and	and olive brown (2.5Y 4/4) channery clay; moderate
Location: Lewis County, Kentucky	Described by:	brownish yellow (10YR 6/6) silty clay loam; moderate fine	medium subangular blocky structure; very firm; common
Parent Material:	A—0 to 5 inches: dark brown (10YB 3/3) silt loam: weak fine	and medium subangular blocky structure; firm; common	fine, medium, and coarse roots; 30% limestone channers;
Vegetation:	granular structure; very friable; many fine and medium, few	acid; clear smooth boundary.	smooth boundary.
Landscape Position:	coarse roots; 10% chert fragments; strongly acid; gradual smooth boundary.	Bt2—12 to 24 inches; strong brown (7.5YR 4/6) channery clay; many fine and medium prominent red (2.5YR 4/6)	R—30 inches; hard limestone bedrock.

SOIL TYPE.....CANEYVILLE

LOCATION	••••••	•••••	LEWIS COU	JNTY, KENT	UCKY	GENERA	L METHOD	5	••••••	1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3.	A1								2 <i>A</i>	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-5	A	22.5	65.6	11.9	2.8	5.7	5.2	4.2	4.6							sil		1	
5-9	B/A	13.8	71.6	14.6	2.2	2.1	2.4	3.0	4.1							sil		1	
9-12	Bt,	8.6	60.6	30.8	1.7	1.2	1.3	1.6	2.8							sicl		1	
12-24	Bt,	4.4	31.8	63.8	0.7	0.7	0.8	0.9	1.3							с		1	
24-30	Bt,	4.8	30.0	65.2	0.2	0.7	1.2	1.5	1.2							с			
	-	рН			E	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic	1	P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
																		I	
						Mi	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt1	85	15 30 34 15											15	12	10				
Bt2									34		45			10	8	3			
Bt3									45	37				13	5				

Caneyville, silt loam (Taxadjunct)	Vegetation: Landscape Position: Drainage:	A—0 to 3 inches; dark brown (7.5YR 3/2) silt loam; weak fine granular structure; friable; many fine and medium, few coarse roots; 10% limestone and sandstone fragments; neutral; clear wavy boundary.	many distinct o wavy boundary Bt3—19 to 29
Pedon #: S94KY-135-64-(1-5)	Moisture when sampled:	Bt1—3 to 10 inches; brown (7.5YR 5/4) silty clay loam;	structure; very f
Classification: Fine, vermiculitic, active, mesic Typic	Sampling Date:	moderate fine and medium subangular blocky structure;	fragments; man
Hapludalfs	Permeability:	very firm; common fine and medium, few coarse roots; 2%	clear wavy bou
Location: Lewis County, Kentucky	Slope:	acid; clear smooth boundary.	C—29 to 36 incl
Parent Material:	Described by:	Bt2—10 to 19 inches; dark brown (7.5YR 4/4) clay; strong	distinct clay film
		medium subangular and angular blocky structure; very firm; few fine and medium roots; 10% chert fragments;	R—36 inches; h

many distinct clay films on peds; medium acid; clear wavy boundary.

Bt3—19 to 29 inches; dark brown (7.5YR 4/4) gravelly clay; moderate medium subangular and angular blocky structure; very firm; few fine and medium roots; 30% chert fragments; many distinct clay films on peds; slightly acid; clear wavy boundary.

C—29 to 36 inches; dark yellowish brown (10YR 4/4) clay; very firm; few fine roots; 35% chert fragments; many distinct clay films on peds; moderately alkaline.

-36 inches; hard limestone bedrock.

SOIL TYPE	CANEYVILLE (TAXADJUNCT)	PEDON #
LOCATION	LEWIS COUNTY, KENTUCKY	GENERAL N
1		

									Particle Size	Class and	Particle Dia	imeter (mm))						
								3	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	A	34.6	48.9	16.5	6.0	9.7	5.8	8.7	4.4						İ	sil/l			
3-10	Bt,	21.7	58.3	20.0	0.4	0.8	3.2	10.5	6.8						İ	sil			
10-19	Bt	7.8	40.6	51.6	0.3	0.5	1.3	3.0	2.7						İ	sic/c			
19-29	Bt,	8.2	31.1	60.7	1.5	1.2	1.5	2.2	1.8						İ	с			
29-36	C	10.2	34.0	55.8	2.8	1.7	1.4	2.0	2.3						İ	с			
		pH			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a	İ	6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	mea/	meg/	mea/	mea/	mea/	mea/	5C1	5C3	mea/	mea/	mea/	Fe ₂ O ₂	CaCO.	Matter	ĸ	No.1
in	H _O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
		Mineralogical Analysis—Estimated Percentages in Various Size Fractions																	
Horizon	1			Sand	+ Silt									Clay		-		-	
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt1	100					1	1			42	1		22	15	15	5			1
Bt2	1						1			36	1		30	10	21	2	1		1
Bt3	1					1				48	1		25	10	15	2	1	1	

Catalpa, silty clay loam overwash

Pedon #: 98KY-075-01-(1-5)

COULTVD

Classification: Fine, smectitic, thermic Fluvaquentic Vertic Endoaquoll

Location: Fulton Co, KY, 5.7 miles west of Hickman along KY Hwy 94 in the Lower Bottom, about 700 feet SW of the junction of KY Hwy 94 and Helm Road north of Hamby Pond; Bondurant 7.5 minute USGS quadrangle; on soil map sheet 22T, east 956,000 feet and north 101,800 feet by the Kentucky coordinate system.

Parent Material: Mississippi River clayey alluvium Vegetation: soybean residue

Landscape Position: Mississippi River flood plain

Drainage: somewhat poorly drained

Moisture when sampled: moist

Sampling Date: 5/15/98

Permeability: slow

CATALDA

Slope: <1 percent

Described by: J. E. McIntosh and P. G. Gregory

Ap1—0 to 3 inches; dark grayish brown (10YR 4/2) silty clay loam; weak medium subangular blocky structure;

friable; common fine roots; common distinct dark gray (10YR 4/1) organic stains; slightly acid (pH 6.1); clear smooth boundary.

Ap2—3 to 8 inches; dark grayish brown (10YR4/2) silty clay; weak medium subangular blocky structure; firm; few fine roots; common distinct dark gray (10YR4/1) organic stains; slightly acid (pH 6.1); clear smooth boundary.

Ab—8 to 26 inches; very dark gray (2.5Y 3/1) silty clay; dark gray (2.5Y 4/1) dry; moderate fine angular blocky structure; very firm; few fine roots; few fine faint dark gray (2.5Y 4/1) iron depletions and common fine distinct olive brown (2.5Y 4/3) masses of iron accumulations; common pressure faces; slightly acid (pH 6.3); clear smooth boundary. Bg—26 to 34 inches; olive brown (2.5Y 4/2) silty clay; moderate medium angular blocky structure; very firm; very few fine roots; many medium faint dark gray (2.5Y 4/1) iron depletions; many medium faint olive brown (2.5Y 4/3) and few medium prominent yellowish brown (10YR 5/6) and strong brown (7.5YR 5.6) masses of iron accumulations; common pressure faces; slightly acid (pH 6.4); gradual smooth boundary.

BCg—34 to 43+ inches; 50 percent olive brown (2.5Y 4/3) and 50 percent dark grayish brown (2.5Y 4/2) silty clay; weak medium angular blocky structure; very firm; many medium distinct dark gray (2.5Y 4/1) iron depletions; common fine prominent yellowish brown (10YR 5/6) and strong brown (7.5YR 5/6) masses of iron accumulations; common pressure faces; slightly acid (pH 6.3).

LOCATION	••••••	F	ULTON COL	UNTY, KENT	UCKY	GENERA	L METHOD	S		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							-
								3.	A1							· · · · · ·	2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	i '	Coa	irse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt	i '		2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mr
0-3	Ap,	13.7	56.7	29.6	1.9	1.0	1.4	3.3	6.1							sicl		I	
3-8	Ap,	7.7	45.2	47.1	0.1	0.3	0.8	2.8	3.7		1					sic		[]	
8-26	AB	15.1	42.7	42.2	0.5	0.2	2.6	8.8	3.0							sic		1	
26-34	Bg	8.6	45.3	46.1	0.09	0.2	0.4	3.3	4.6		1					sic		[]	
34-43+	BCg	11.1	40.8	48.1	0.4	0.7	0.7	2.1	7.2		1					sic		[]	
		pH Exchangeable Bases (5A1) Base Saturation 6G1x 6H1a 5A3a													6N7	6A1a	60sz	6S6	
				6N2z	602z	602z	6P2z	5B1a	5A1z						1	i l		1	
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC		i '	Organic	1 1	P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	K	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-3	_															i l	2.87	1	
3-8																i l	2.22	1	
8-26																i l	1.94	1	
26-34																i l	1.45	1	
34-43+																i .	0.97		
						м	ineralogica	l Analysis—	-Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

COOKY 075 001

Catalpa, silty clay loam

Pedon #: S01KY-075-01-(1-8)

Classification: Fine, smectitic, thermic Fluvaquentic Vertic Endoaquolls

Location: Fulton County, Kentucky; 6.6 miles west of Hickman along KY Hwy 94 in the Lower Bottom, 3,200 feet northeast of the intersection of KY Highways 94 and 971 at Sassafras Ridge; Bondurant 7.5 minute USGS quadrangle; on soil map sheet 22T; east 952,300 feet and north 101,600 feet by the Kentucky coordinate system.

Parent Material: Mississippi River clayey alluvium

Vegetation: soybean residue

Landscape Position: Mississippi River flood plain

LOCATION FULTON COUNTY, KENTUCKY

Drainage: somewhat poorly drained

Moisture when sampled: moist

SOIL TYPE.....

Sampling Date: 10/23/00

Permeability: slow

Slope: <1 percent

...... CATALPA

Described by: J.E. McIntosh

Ap—0 to 3 inches; dark brown (10YR 3/3) silty clay loam, brown (10YR 5/3) dry; moderate medium granular structure; friable, common fine roots; neutral (pH 6.9); abrupt smooth boundary.

Ap2—3 to 8 inches; dark brown (10YR 3/3) silty clay; brown (10YR 5/3) dry; moderate medium subangular blocky structure; firm; common fine roots; neutral (pH 6.6); clear smooth boundary.

A—8 to 20 inches; very dark grayish brown (10YR 3/2) silty clay, dark grayish brown (10YR 4/2) dry; moderate medium prismatic structure parting to moderate medium subangular blocky; very firm; common fine roots; few fine

faint dark gray (2.5Y 4/1) iron depletions along ped faces; common fine distinct olive brown (2.5Y 4/3) masses of iron accumulations; common pressure faces; common wormcasts; neutral (pH 6.6); gradual smooth boundary.

Bg1—20 to 33 inches; dark grayish brown (2.5Y 4/2) silty clay; moderate medium prismatic structure parting to strong medium angular blocky; very firm; few fine roots; common medium faint dark gray (2.5Y 4/1) iron depletions along ped faces; few fine prominent strong brown (7.5YR 5/6) masses of iron accumulations; common prominent very dark grayish brown (10YR 3/2) organic stains; common pressure faces; common wormcasts; neutral (pH 6.7); clear smooth boundary.

Bg2—33 to 48 inches; 50 percent dark grayish brown (2.5Y 4/2) and 50 percent olive brown (2.5Y 4/3) silty clay/siltyclayloam; moderate medium subangular blocky structure; very firm; few fine roots; many medium faint dark gray (2.5Y 4/1) iron depletions along ped faces; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulations; neutral (pH 6.7); gradual smooth boundary.

2Bg3—48 to 65 inches; olive brown (2.5Y 4/2) clay loam; moderate medium subangular blocky structure; firm; very few fine roots; many medium faint dark gray (2.5Y 4/1) iron depletions along ped faces; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulations; neutral (pH 6.7) gradual smooth boundary.

2BCg—65 to 72 inches; 40 percent dark grayish brown (2.5Y 4/2), 30 percent gray (2.5Y 5/1) and 30 percent olive brown (2.5Y 4/3) clay loam; weak medium subangular blockystructure; firm; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulations; neutral (pH 6.7); clear smooth boundary.

2Cg—72 to 80 inches; 60 percent brown (10YR 4/3) and 40 percent gray (10YR 5/1) fine sandy loam; massive; very friable; few medium prominent yellowish brown (10YR 5/6) masses of iron accumulations; neutral (pH 6.8).

									Particle Size	Class and	Particle Dia	meter (mm)						
								3.	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragmo	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	Ap ₁	10.4	58.7	30.9	0.1	0.3	0.6	1.8	7.6							sicl			
3-8	Ap ₂	8.9	53.9	37.2	0.1	0.1	0.2	0.8	7.7							sicl			
8-20	A	3.2	52.6	44.2	0	0	0.1	0.5	2.6							sic			
20-33	Bg ₁	9.9	51.5	38.6	0	0.1	0.1	1.0	8.7							sicl/sic			
33-48	Bg,	24.3	48.7	27.0	0	0.1	0.2	2.4	21.6							cl/l/sil			
48-65	2Bg ₃	35.4	37.6	27.0	0	0.3	0.7	2.8	31.6							cl/l			
65-72	2BCg	34.7	38.6	26.7	0	0.3	0.2	3.9	30.3							cl/l			
72-80	2Cg	71.3	19.0	9.7	0	0.1	0.2	24.4	46.6					1	İ	sl	1		1
	_	рН			E	xchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
		-		6N2z	602z	602z	6P2z	5B1a	5A1z					1	1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	·	·				м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns	·	·	<u></u>			
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Chavies, silt loam

Pedon #: \$90KY-135-13(1-5)

Classification: Coarse-Ioamy, mixed, active, mesic, Ultic Hapludalfs

Location: Lewis County, Kentucky; Atlas sheet 3A; about 3.1 miles west of the intersection of KY-57 and KY-8 at Concord, about 1,800 feet north of KY-8, about 250 feet north of Chesapeake and Ohio railroad tracks and about 30 feet west of farm road. x: 2,194,000 feet; Latitude: 38° 41'38"; y: 434,850 feet; Longitude: 83° 33'25"

Parent Material: Mixed alluvium of the Ohio River floodplain, Quaternary system

Vegetation: Orchard grass, hayfield

Landscape Position: Terrace

Drainage:

Moisture when sampled: Moist

Sampling Date: 6/26/90

Permeability:

Slope: 1%

Described by: S. Jacobs and D. Dotson

A—0 to 8 inches (0 to 20 cm); brown (10YR 4/3) loam; moderate fine granular structure with some single grain; very friable; few fine roots; moderately alkaline; clear smooth boundary.

Bt1—8 to 22 inches (20 to 56 cm); dark yellowish brown (10YR 4/6) loam; weak fine and medium subangular blocky structure; very friable; few fine roots; few faint clay bridges on sand grains; moderately alkaline; gradual smooth boundary.

Bt2—22 to 49 inches (56 to 124 cm); dark yellowish brown (10YR 4/6) loam; moderate fine and medium subangular blocky structure in upper part and weak medium and coarse subangular blocky structure in lower part; very friable; few fine roots; few faint clay films on ped surfaces and common faint clay bridges on sand grains; medium acid; clear smooth boundary.

Bt3—49 to 54 inches (124 to 137 cm); dark yellowish brown (10YR 4/6) loamy sand; weak coarse subangular blocky structure and single grained; very friable; few faint clay films and many clay bridges on sand grains; very strongly acid; clear smooth boundary.

C—54to66 inches (137 to 168 cm); yellowish brown (10YR 5/6) sandy loam; structureless and single grained; very friable; very strongly acid.

SOIL TYPE. LOCATION			LEWIS COL	CH JNTY, KENT	AVIES UCKY	PEDON # GENERA	tt L METHOD	S	S9	0KY-135-0 1A1 1A2 1	13-(1-5) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-8	Ар	64.8	22.3	12.9	0.2	0.6	6.6	40.0	17.4							sl			
8-22	Bt ₁	65.6 17.6 16.8 0.1 0.4 6.2 42.3 16.6 60.5 22.1 17.4 0.1 0.2 1.9 38.5 19.8														sl			
22-49	Bt ₂	60.5	22.1	17.4	0.1	0.2	1.9					sl							
49-54	Bt,	68.0	18.2	13.8	0	0.1	2.9	43.6	21.4							sl			
54-66	C	87.4	5.1	7.5	0	0.5	11.7	62.8	12.4							ls			
		pH			Ex	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	sc			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						Mi	ineralogical	l Analysis—	Estimated F	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Cumberland, silt loam (Taxadjunct)

Pedon #: \$96KY-227-08-(1-7)

Classification: Fine-silty, mixed, mesic Rhodic Paleudalfs

Location: Warren Co., approximately 300 feet south of the intersection of Glen Lily Road and South Lee Drive; 200 feet west of South Lee Drive in garden site. Longitude: 86° 27' 49'; Latitude: 36° 59' 46"

Parent Material: Limestone

Vegetation:

Landscape Position: Ridge

Drainage: Moisture when sampled: Sampling Date: 8/22/96 Permeability:

Slope: 3%

Described by: Michael J. Mitchell

Ap—0 to 3 inches; dark brown (10YR 4/3) heavy silt loam; weakfine subangular blocky structure parting to moderate fine granular structure; firm; many fine and medium, few coarse roots; moderately acid; abrupt wavy boundary.

Bt1—3 to 7 inches; dusky red (10R 3/4) silty clay loam; moderate fine subangular blocky structure parting to weak fine subangular blocky structure; firm; many fine roots; many distinct clay films; slightly acid; gradual smooth boundary.

Bt2—7 to 17 inches; dark red (10R 3/6) >35% silty clay loam; moderate medium subangular blocky structure; firm; common black stains on ped faces; many fine roots; many prominent clay films; very strongly acid; gradual smooth boundary.

Bt3—17 to 28 inches; dark reddish brown (2.5YR 3/4) silty clay; strong medium subangular blocky structure; firm; small oval black concretions between ped faces; few fine roots; many distinct clay films; very strongly acid; gradual smooth boundary.

Bt4—28 to 42 inches; dusky red (10R 3/3) silty clay; strong coarse subangular blocky structure; very firm; few black

stains on ped faces; few fine roots; many prominent clay films; <1% small chert fragments; gradual smooth boundary.

Bt5—42 to 61 inches; dusky red (10R 3/4) silty clay; strong coarse subangular blocky structure; very firm; common round black concretions between peds; few fine roots; many prominent clay films; very strongly acid; <1% guartzite and chert fragment.

Bt6—61 to 80 inches; dark red (10R 3/6) silty clay; moderate medium subangular blocky structure; very firm; common black concretions; few fine roots; common prominent clay films; <1% quartzite and chert fragments; very strongly acid.

									Particle Size	Class and	Particle Dia	ameter (mm)						
								3	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very		1		Very		1	1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
3-7	Bt,	6.8	64.0	29.2	0.5	0.6	0.8	2.4	2.5		1					sicl			
7-17	Bt,	6.2	60.7	33.1	0.6	0.8	0.6	2.1	2.1		1					sicl			
17-28	Bt,	7.1	61.5	31.4	0.6	0.7	0.8	2.3	2.7		1					sicl			
28-42	Bt	7.2	51.1	41.7	0.6	0.5	0.7	2.7	2.7		1					sic/sicl			
42-61	Bt _c	10.1	42.8	47.1	1.2	0.9	1.1	3.3	3.6		1					sic			
61-80	Bt	8.1	34.5	57.4	1.2	0.9	0.8	2.8	2.4		1					с			
		рН			E	xchangeab	le Bases (5A	(1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
17-28	4.9		6.4								1							102.5	2
28-42	4.7		6.2								1							116.5	3.5
42-61	4.5		6.3								1							116.5	2
61-80	4.9		6.3								1							11.95	2
	•					м	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns	•		•		-	•
Horizon				Sand	l + Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt ₃									10	35			10	30	15				
Bt ₄	ĺ					ĺ			15	33			15	30	12				
Bt ₅									20	27			8	35	10				
Bt,					1				20	25	1		5	40	10				

Cumberland, silt loam (Taxadjunct)

Pedon #: S97KY-227-03-(1-4)

Classification: Fine, mixed, semiactive, mesic Typic Paleudalfs

Location: Warren County, approximately 1.5 miles north of the intersection of U.S. Highway 231 and Cumberland Trace Road; then .94 mile east of Cumberland Trace Road on ridge above Drakes Creek. Longitude: 86° 23' 18'; Latitude: 36° 57' 8"

Parent Material: Old alluvium/residuum Vegetation:

Landscape Position: Ridge

Drainage:

Moisture when sampled:

Sampling Date: 4/9/97

Permeability:

Slope: 7%

Described by: Michael J. Mitchell

Ap—0 to 8 inches; brown (10YR 4/3) silt loam; weak fine granular structure; <5% small friable chert fragments; common fine roots; moderately acid; gradual wavy boundary.

AB—8 to 14 inches; brown (10YR 4/3) gravelly silty clay loam; weak medium subangular blocky structure; firm; few fine roots; 15% angular chert and water-worn fragments (siltstone, chert, and quartz); slightly acid; clear wavy boundary.

Bt1—14 to 25 inches; red (2.5YR 4/6) gravelly heavy silty clay loam; few faint clay films; yellowish red (5YR 4/6); light brown (7.5YR 6/4) iron accumulations; few black stains between ped faces; weak medium subangular blocky

structure; firm; 15% chert and water-worn fragments; slightly acid; gradual wavy boundary.

Bt2—25 to 50 inches; dark red (2.5YR 3/6) silty clay; few black stains; moderate medium subangular blocky structure; firm; plastic; common distinct yellowish brown (10YR 5/6) clay films on ped faces; 12% water-worn and weathered chert fragments slightly acid; gradual wavy boundary.

2Bt3—50 to 80 inches; 60% red (2.5YR4/6) and 40% strong brown (2.5YR4/6) silty clay; moderate medium subangular blocky structure; firm; many distinct clay films; neutral.

SOIL TYPE	CUMBERLAND (TAXADJUNCT)
LOCATION	WARREN COUNTY, KENTUCKY

PEDON # \$97-KY-227-003-(1-5) GENERAL METHODS1A1 1A2 1B1B 2A1

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
14-25	Bt ₁	26.0	54.0	20.0	2.8	2.7	4.2	8.8	7.5							sil			
25-50	Bt ₂	28.6 36.9 34.5 1.9 2.6 4.3 10.3 9.5 26.4 37.5 36.1 1.6 1.9 3.7 9.7 9.5														cl			
50-80	2Bt ₃	26.4 37.5 36.1 1.6 1.9 3.7 9.7 9.5														cl			
		рН			E	kchangeabl	le Bases (5A	.1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						M	ineralogica	l Analysis—	Estimated F	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
C.S.	72	F MI K CL INT RE CA SM V HIV CL INT K 28 28 22 24 23 14												12	5				

Cynthiana, silty clay

Pedon #: S99KY-011-10-(1-2)

 $\label{eq:classification: Clayey, mixed, active, mesic, Lithic Hapludalfs$

Location: Bath County, Kentucky; Owingsville SE Quarter Quad., update sheet 13T; about 0.85 miles Sof Reynoldsville in Bath Co., about 0.4 mile N. of road along Burbridge Branch and about 280 feet uphill from drain. **Parent Material:** Residuum of layered limestone and thin shale of the Bull Fork formation

Vegetation: fescue, eastern red cedar

Landscape Position: Ridgetop and slide slopes Drainage:

Moisture when sampled: moist

Sampling Date: 03/22/99

Permeability:

Slope: 31%

Described by: D. Hines

A—0 to 4 inches (0 to 10 cm); brown (10YR 4/3) silty clay; moderate subangular blocky structure; friable; common fine roots; 5 percent limestone flagstones; moderately alkaline; clear smooth boundary.

Bt1—4 to 18 inches (10 to 46 cm); light olive brown (2.5Y 5/4) silty clay; many distinct yellowish brown (10YR 5/6)

lithochromic mottles; moderate medium subangular blocky structure; firm; common fine roots in upper part and few fine roots in lower part; 15 percent limestone flagstones and channers; common distinct clay films on faces of peds; moderately alkaline; abrupt smooth boundary.

 $R{--}18$ to 22 inches (46 to 56 cm); hard limestone of the Bull Fork formation.

SOIL TYPE.	TYPECYNTHIANA ITIONBATH COUNTY, KENTUCKY					PEDON # GENERA	# L METHOD	S	S	99-KY-011 1A1 1A2 1	·10-(1-2) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-4	A	15.3 45.9 38.8 1.3 4.8 3.7 3.5 2.8 15.8 40.4 42.8 4.4 41 27 24 12														sicl/sic			
4-18	Bt ₁	15.8 40.4 43.8 4.4 4.1 3.7 2.4 1.2														sic/c			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z]				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO,	Matter	ĸ	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogical	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F MI K CL INT RE CA SM V HIV CL INT K											MI	Q	GI	GO	F		

Egam, silt loam (Taxadjunct)

Pedon #: S93KY-239-19-(1-3)

SOIL TYPE..

Classification: Fine-silty, mixed, active, mesic Cumulic Hapludolls

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Alluvium

Vegetation: Fescue, white clover hay field Landscape Position: Floodplain

PEDON #

Drainage:

..... EGAM (TAXADJUNCT)

Moisture when sampled: Moist

Sampling Date: 10/4/93 Permeability:

Slope: 3.5%

..S93KY-239-019-(1-3)

Described by: R. Jones

A—0 to 15 inches (0 to 38 cm); dark brown (10YR 3/3) silt loam; weak fine granular structure; very friable; common fine roots; mildly alkaline; gradual smooth boundary.

A2—15 to 30 inches (38 to 76 cm); very dark grayish brown (10YR 3/2) silt loam; moderate fine granular structure;

friable; few fine roots; mildly alkaline; gradual smooth boundary.

Bw—30 to 42 inches (76 to 107 cm); very dark grayish brown (10YR 3/2) and dark brown (10YR 3/3) silty clay loam; common fine and medium dark yellowish brown (10YR4/6) mottles; moderate medium subangular blocky structure; firm; mildly alkaline.

									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very	1	1		Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-15	A,	8.4	77.7	13.9	1.3	1.3	1.4	1.9	2.5							sil			
15-30	Α,	8.5	75.7	15.8	1.2	1.2	1.6	2.1	2.4							sil			
30-42	Bw	10.7	64.0	25.3	2.9	2.5	2.0	1.9	1.4							sil/sicl			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meg/	meg/	meq/	meg/	meg/	meq/	5C1	5C3	meq/	meg/	meg/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-15	6.66		6.73				1		_				-				5.37	196	100+
15-30	6.93		6.90				1										4.34	96.5	100+
30-42	6.81		6.92				1										1.87	108	100+
						M	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns			•	•	•	
Horizon				Sand	+ Silt			-						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Egam, silty clay loam (Taxadjunct)

Pedon #: S99KY-011-03-(1-5)

Classification: Fine, mixed, active, mesic Cummulic Hapludolls

Location: Bath County, Kentucky; Olympia NW Quarter Quad, update sheet 217; about 2.0 miles S of Owingsville in Bath Co.; about 0.7 mile SE of Kentucky Highway 36 bridge over Slate Creek; about 400 feet W of barn; and about 320 feet E of Slate Creek. Parent Material: Alluvium

Vegetation: corn stubble, Johnsongrass, tall fescue strip between cornfields

Landscape Position: low terrace

Drainage:

Moisture when sampled: moist

Sampling Date: 1/29/99

Permeability:

Slope: 1%

Described by: D. Hines

Ap—0 to 9 inches (0 to 23 cm); very dark grayish brown (10YR 3/3), (10YR 4/3 dry), silty clay loam; moderate medium granular structure; friable; many medium and fine roots; 2 percent rounded chert; neutral; gradual smooth boundary.

Bw1—9 to 18 inches (23 to 46 cm); very dark grayish brown (10YR3/3), (10YR4/3 dry), silty clay loam; moderate medium subangular blocky structure; friable; common fine roots; 2 percent rounded chert; common faint dark grayish brown (10YR 4/2) silt coatings on burrows and faces of peds; neutral; diffuse smooth boundary.

Bw2—18 to 42 inches (46 to 107 cm); very dark grayish brown (10YR 3/3) silty clay; moderate medium angular

blocky structure; very friable; few fine roots; 2 percent rounded chert; common faint dark grayish brown (10YR 4/2) on faces of peds; neutral; gradual wavy boundary.

BC—42 to 49 inches (107 to 125 cm); very dark grayish brown (10YR3/2) silty clay; common medium faint yellowish brown (10YR 5/6) lithochromic mottles; weak medium angular blocky structure; very firm; one fine root; 2 percent rounded chert; neutral; gradual smooth boundary.

C—49 to 86 inches (125 to 218 cm); dark grayish brown (2.5Y 4/2) silty clay; common medium distinct yellowish brown (10YR 5/6) lithochromic mottles; massive; very firm; neutral.

SOIL TYPE.	TYPEEGAM (TAXADJUNCT)					PEDON #	ŧ		S9	99-KY-011	-03-(1-5)								
LOCATION	••••••	•••••	BATH COU	JNTY, KENT	UCKY	GENERA	L METHOD	S	••••••	1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-9	Ар	8.7	62.9	28.4	0.4	1.3	1.8	2.4	2.8							sicl/sil			
9-18	Bw ₁	5.0	60.8	34.2	0.1	0.3	0.7	1.3	2.6							sicl			
18-42	Bw ₂	3.3	57.3	39.4	0.1	0.1	0.3	0.9	1.9							sicl/sic			
42-49	BC	4.8	62.1	33.1	0.5	0.8	0.6	0.8	2.1							sicl			
49-86	C	5.6	59.0	35.4	0.7	1.0	0.7	0.9	2.3							sicl			
		pH			Ex	changeabl	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z]				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	Mineralogical Analysi									ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Elk, silt loam

Pedon #: S90KY-135-16-(1-6)

Classification: Fine-silty, mixed, active, mesic, Ultic Hapludalfs

Location: Lewis County, Kentucky; Atlas sheet 3B; about 3.1 miles northwest of the intersection of KY-57 and KY-8 at Concord, about 1,200 feet north of KY-8, about 100 feet west of farm road, and about 150 feet south of the CSX railroad tracks.Latitude: 38° 41'30"; Longitude: 83° 33' 15"; x: 2,198,000 feet; y: 434,000 feet **Parent Material:** Mixed alluvium of the Ohio River floodplain, Quaternary Geologic System

Vegetation: Orchard grass, sweet clover, hayfield

Landscape Position: Terrace

Drainage:

Moisture when sampled: Moist

Sampling Date: 6/27/90

Permeability:

Slope: 1%

Described by: S. Jacobs and D. Dotson

 $A{-}0$ to 11 inches (0 to 28 cm); dark brown (10YR 4/3) silt loam; weak fine granular structure; very friable; common fine roots; medium acid; clear wavy boundary.

Bt1—11 to 17 inches (28 to 42 cm); dark yellowish brown (10YR 4/6) silt loam; weak fine and medium subangular blocky structure; firm; few fine roots; many faint clay films on ped surfaces; neutral; clear smooth boundary.

Bt2—17 to 30 inches (42 to 76 cm); yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; firm; few fine roots; many distinct clay films on ped surfaces; very strongly acid; clear smooth boundary. Bt3—30 to 45 inches (76 to 114 cm); yellowish brown (10YR5/6) siltloam; moderate medium subangular blocky structure; friable; many distinct clay films on ped surfaces; very strongly acid; gradual smooth boundary.

BC—45 to 53 inches (114 to 135 cm); dark yellowish brown (10YR 4/6) loam; weak medium subangular blocky structure; friable; few faint clay films on ped surfaces; very strongly acid; abrupt smooth boundary.

C—53 to 65 inches (135 to 165 cm); dark yellowish brown (10YR 4/6) loamy sand; single grained; very friable; few clay bridges between sand grains; very strongly acid.

SOIL TYPE.	PEELK PEDON # DNLEWIS COUNTY, KENTUCKY GENERAL METHODS								S9	0KY-135-0 1A1 1A2 1)16-(1-6) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2 <i>A</i>	2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	nts
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth in	Horizon	Sand (2-0.05)	(0.05- 0.002)	Clay <0.002	Coarse (2-1)	Coarse (1-0.5)	Medium (0.5-0.25)	Fine (0.2501)	Fine (0.1-0.05)	(0.05- 0.02)	Int. III (.02002)	Int. II (0.2-0.02)	Int. l (2-0.2)	Than VF (2-0.1)	(0.1- 0.002)	Textural Class	>2 Pct	Pct of <76mm	Pct of <76mm
0-11	Ар	11.0	73.1	15.9	0.6	2.9	0.1	3.7	3.7							sil			
11-17	Bt ₁	6.0	69.4	24.6	0.3	2.1	0	1.5	2.1							sil			
17-30	Bt ₂	3.0	68.1	28.9	0.2	0.8	0	1.0	2.0							sicl/sil			
30-45	Bt ₃	22.5	58.0	19.5	0	0.7	0	1.8	20.0							sil			
45-53	BC	11.3	72.6	16.1	0	0.9	0	10.2	0.2							sil			
53-65	C	75.6	17.7	6.7	0.2	45.2	0	29.9	0.3							sl/ls			
		рН			E	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
Depth in	8C1a (1:1) H ₂ O	pH Exchangeable Bases (5A1) 6N2z 602z 602z 5B1a 8C1c 8D7 Ca Mg K Na TEB (1:1) SMP meq/ meq/ meq/ meq/ meq/ KCI Buff. 100am 100am 100am 100am 100am							5A1z CEC meq/ 100gm	5C1 Pct	5C3 Pct	H+Al meq/ 100 gm	EA meq/ 100gm	SC meq/ 100gm	Fe ₂ O ₃ Pct	CaCO₃ Eq. Pct	Organic Matter Pct	K ppm	P Bray No.1 ppm
						Mi	neralogical	Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	К	MI	Q	GI	GO	F
																			1

Elk, silt loam	Landscape Position: Sinkhole bottom	A—0 to 14 inches (0 to 36 cm); dark brown (10YR 4/3)	structure; many faint clay films on ped faces; medium
	Drainage:	silt loam; weak medium subangular blocky structure	acid; gradual smooth boundary.
Pedon #: \$93KY-239-16-(1-5)	Moisture when sampled: Moist	parting to weak fine granular; strongly acid; gradual smooth boundary.	Bt3—52 to 78 inches (132 to 198 cm); dark brown (7.5YR
Classification: Fine-silty, mixed, active, mesic Ultic	Sampling Date: 10/6/93	Bt1—14 to 27 inches (36 to 69 cm); dark brown (10YR 4/3)	structure; many distinct clay films on ped faces; medium
Hapludalfs	Permeability:	and brown (7.5YR4/4) silt loam; weak medium subangular	acid; gradual smooth boundary.
Location: Woodford Co, KY; University of Kentucky farm	Slope: 1%	blocky structure; common faint clay films on ped faces;	Bt4—78 to 88 inches (198 to 224 cm): dark brown (7.5YR
Parent Material: Alluvium	Described has	strongly acid; gradual smooth boundary.	4/4) and dark yellowish brown (10YR 4/6) silty clay loam;
egetation: Bluegrass, fescue pasture	Described by:	Bw2—27 to 52 inches (69 to 132 cm); dark brown (7.5YR 4/4) silty clay loam; weak medium subangular blocky	weak medium subangular blocky structure; many faint clay films on ped faces; strongly acid.

SOIL TYPE.	IL TYPE ELK CATIONWOODFORD COUNTY, KENTUCKY					PEDON # GENERA	[#] L METHOD	s	S9	3KY-239-0 1A1 1A2 1	016-(1-5) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3.	A1								2/	42	3B1a
		Total Sand Silt Sand VF												VFS Plus	1	Coa	arse Fragme	ents	
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-14	Ар	8.3	78.1	13.6	1.3	2.2	2.1	1.4	1.3							sil			
14-27	Bt,	4.7	70.9	24.4	0.8	1.5	1.1	0.6	0.7							sil			
27-52	Bt,	7.0	57.6	35.4	1.7	2.2	1.5	0.8	0.8							sicl			
52-78	Bt,	9.6	55.2	35.2	2.0	2.7	2.1	1.4	1.4							sicl			
78-88	Bt₄	10.3	50.8	38.9	1.3	1.7	3.1	3.1	1.1							sicl/sic			
		рН			E	kchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a	İ	6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z		1				1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-14	5.31		6.36														5.45	250+	100+
14-27	5.23		6.53			İ					1				İ		1.19	250+	100+
27-52	5.49		6.40			İ					1				İ		0.61	250+	100+
52-78	5.17		6.11			İ					1				İ		0.38	176	100+
78-88	5.14		6.15			İ					1				İ		0.39	138	100+
	•				•	M	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns	•		•	•	•	
Horizon				Sand	+ Silt			•						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
					1	İ	1	1				1		1	1	1	1	İ	1

Fairmount, silt loam (Taxadjunct)

Pedon #: \$93KY-239-06-(1-3)

Classification: Clayey, mixed, mesic Lithic Argiudolls

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Limestone residuum Vegetation: Oak, poplar, box elder, woodland Landscape Position: Sideslope Drainage: Moisture when sampled: Moist Sampling Date: 7/14/93 Permeability:

Slope: 25%

Described by: S. Jacobs

A—0 to 7 inches (0 to 18 cm); dark brown (10YR 3/3) silt loam; fine medium subangular blocky structure parting to moderate fine subangular blocky; friable; common fine, medium and coarse roots; mildly alkaline; gradual smooth boundary. Bt1—7 to 16 inches (18 to 41 cm); dark brown (10YR 4/3) silty clay loam; common fine and medium subangular blocky structure; firm; common fine and coarse roots; mildly alkaline; clear smooth boundary.

Bt2—16 to 19 inches (41 to 48 cm); yellowish brown (10YR 5/4) clay; moderate medium subangular blocky and angular blocky structure; very firm; few fine roots; 30 percent limestone channers; mildly alkaline; abrupt smooth boundary.

R—19 inches; hard limestone bedrock.

SOIL TYPE.	PE FAIRMOUNT (TAXADJUNCT) PEDON # NNWOODFORD COUNTY, KENTUCKY GENERAL METHOD								S9	3KY-239-0 1A1 1A2 1	006-(1-3) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm))						
								3	A1						-		2/	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very		1		Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-7	A	16.0	65.7	18.3	1.7	3.1	4.6	3.9	2.7							sil			
7-16	Bt,	6.4	56.4	37.2	0.7	0.8	1.2	1.8	1.9							sicl			
16-19	Bt,	12.1	46.1	41.8	0.7	0.9	09	3.0	6.6		1			1		sic/sicl			
		pН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z		1			1	1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-7	7.24		7.08														13.37	245.5	100+
7-16	7.47		7.14		1		1				1			1			3.82	138	100+
16-19	7.84		7.36		1		1				1			1			2.80	107.5	100+
						м	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns		•			-	
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
							1												
					· .														

Faywood, silt loam (Taxadjunct)

Pedon #: S93KY-239-02-(1-4)

Classification: Fine-silty, mixed, active, mesic Typic Hapludalfs

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Limestone residuum Vegetation: Fescue, white clover, pasture field Landscape Position: Ridgetop Drainage: Moisture when sampled: Moist Sampling Date: 6/30/93 Permeability:

Slope: 5%

Described by: S. Jacobs

A—0 to 10 inches (0 to 25 cm); dark brown (10YR 4/4) silt loam; weak medium subangular blocky structure parting to moderate fine granular; very friable; many fine and medium roots; medium acid; gradual smooth boundary.

BA—10 to 16 inches (25 to 41 cm); dark yellowish brown (10YR 4/4) and (10YR 4/6) silt loam; moderate medium subangular structure; friable; common fine roots; slightly acid; gradual smooth boundary. Bt1—16 to 27 inches (41 to 69 cm); yellowish brown (10YR 5/6) silty clay loam; moderate medium angular blocky and subangular blocky structure; friable; many faint clay films on ped faces; slightly acid; gradual smooth boundary.

Bt2—27 to 35 inches (69 to 89 cm); yellowish brown (10YR 5/6) silty clay; moderate medium columnar structure parting to moderate medium angular blocky; firm; many distinct clay films on ped faces; slightly acid; clear wavy boundary.

R—35 inches (89 cm); hard limestone bedrock

SOIL TYPE. LOCATION	DIL TYPE FAYWOOD (TAXADJUNC CATIONWOODFORD COUNTY, KENTUCH				UNCT) UCKY	PEDON # GENERA	# L METHOD	S		3KY-239-0 1A1 1A2 1	002-(1-4) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2/	2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-10	A	9.9	74.8	15.3	1.0	3.0	2.9	1.8	1.2							sil			
10-16	BA	5.1	75.8	19.1	0.2	1.5	1.6	1.1	0.7							sil			
16-27	Bt,	14.2	59.6	26.2	0.9	3.3	2.3	6.6	1.1							sil/sicl			
27-35	Bt	7.7	61.9	30.4	0.9	2.8	2.0	1.1	0.9							sicl			
	<u> </u>	pH			E	changeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z		ſ				1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	sc			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meg/	meg/	meg/	meg/	meg/	meg/	5C1	5C3	meg/	meg/	meg/	Fe ₂ O ₂	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-10	5.98		6.66													-	3.85	162.5	77.5
10-16	6.16		6.74														2.42	178.0	66
16-27	6.01		6.75														0.82	56.5	93
27-35	6.15		6.82				1				1						0.44	75.5	86.5
					•	M	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns			•			
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Faywood, silty clay loam

Pedon #: S99KY-011-08-(1-4)

Classification: Fine, mixed, active, mesic Typic Hapludalfs

Location: Bath County, Kentucky; Owingsville NE Quarter Quad., update sheet 7B; about 0.6 mile NW of Reynoldsville in Bath Co., about 1120 feet N. of Kentucky Highway 36; and about 200 feet uphill from drain on a west facing slope. **Parent Material:** Residuum of the layered limestone and thin shale of the upper Grant Lake formation

Vegetation: Fescue, broomsedge, bluegrass, orchardgrass

Landscape Position: Side slope

Drainage:

Moisture when sampled: Moist

Sampling Date: 03/17/99

Permeability: Slope: 14% Described by: D. Hines

A—0 to 6 inches (0 to 15 cm); dark yellowish brown (10YR 4/4) silty clay loam; few faint yellowish brown (10YR 5/6) lithochromic mottles; moderate fine subangular blocky structure; friable; many fine roots; slightly alkaline; clear smooth boundary.

Bt1—6 to 11 inches (15 to 28 cm); yellowish brown (10YR 5/6) silty clay; moderate medium subangular blocky structure; firm; common fine roots; common faint yellow-ish brown (10YR 5/4) clay films on faces of peds; strongly acid; clear smooth boundary.

Bt2—11 to 29 inches (28 to 74 cm); light olive brown (2.5Y 5/3) silty clay; common medium faint yellowish brown (10YR 5/6) lithochromic mottles; weak medium subangular blocky structure; few fine roots; common faint clay films on faces of peds; slightly alkaline; clear smooth boundary.

C—29 to 32 inches (74 to 81 cm); light yellowish brown (2.5Y 6/3) silty clay; common medium distinct yellowish brown (10YR 5/6) lithochromic mottles; massive; firm; few fine roots; 20 percent limestone gravel; moderately alkaline; abrupt smooth boundary.

R—32 to 36 inches (81 to 91 cm); hard limestone of the upper Grant Lake formation.

SOIL TYPE	FAYWOOD	PEDON #
LOCATION	BATH COUNTY, KENTUCKY	GENERAL METHODS1A1 1A2 1B1B 2A1
		Particle Size Class and Particle Diameter (mm)

		Particle Size Class and Particle Diameter (mm)																	
		3A1															2A2		3B1a
		Total Sand						Silt					Sand	VFS Plus		Coarse Fragments			
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-6	A	13.1	55.3	31.6	0.6	2.8	3.7	3.4	2.6							sicl			
6-11	Bt,	4.1	43.7	52.2	0	0.5	0.9	1.3	1.4							sic			
11-29	Bt,	3.9	46.5	49.6	0.1	0.1	0.6	1.5	1.6							sic			
29-32	C	30.7	39.9	29.4	7.9	8.9	5.9	5.1	3.2							cl			
		pH Exchangeable Bases (5A1)						(1)		Base Saturation			6H1a	5A3a		6N7	6A1a	60sz	6S6
			1	4110	600	(0)-	(0)-	EP1a	51-		1	1		1			1		
				6N2z	602Z	002Z	OPZZ	JDIa	JAIZ										
	8C1a	8C1c	8D7	6N2z Ca	602z Mg	6022 K	Na	TEB	CEC			H+AI	EA	sc			Organic		P Bray
Depth	8C1a (1:1)	8C1c (1:1)	8D7 SMP	6N2z Ca meq/	602z Mg meq/	K meq/	Na meq/	TEB meq/	CEC meq/	5C1	5C3	H+AI meq/	EA meq/	SC meq/	Fe,O,	CaCO,	Organic Matter	к	P Bray No.1
Depth in	8C1a (1:1) H,O	8C1c (1:1) KCl	8D7 SMP Buff.	6N2z Ca meq/ 100gm	602z Mg meq/ 100gm	6022 K meq/ 100gm	Na Ma Meq/ 100gm	TEB meq/ 100gm	CEC meq/ 100gm	5C1 Pct	5C3 Pct	H+Al meq/ 100 gm	EA meq/ 100gm	SC meq/ 100gm	Fe ₂ O ₃ Pct	CaCO ₃ Eq. Pct	Organic Matter Pct	K ppm	P Bray No.1 ppm
Depth in	8C1a (1:1) H ₂ O	8C1c (1:1) KCl	8D7 SMP Buff.	6N2z Ca meq/ 100gm	6022 Mg meq/ 100gm	6022 K meq/ 100gm	Na meq/ 100gm	TEB meq/ 100gm	CEC meq/ 100gm	5C1 Pct	5C3 Pct	H+Al meq/ 100 gm	EA meq/ 100gm	SC meq/ 100gm	Fe ₂ O ₃ Pct	CaCO ₃ Eq. Pct	Organic Matter Pct	K ppm	P Bray No.1 ppm
Depth in	8C1a (1:1) H ₂ O	8C1c (1:1) KCl	8D7 SMP Buff.	6N2z Ca meq/ 100gm	6022 Mg meq/ 100gm	6022 K meq/ 100gm	Na meq/ 100gm ineralogica	TEB meq/ 100gm	CEC meq/ 100gm Estimated P	5C1 Pct Percentages	5C3 Pct s in Various	H+AI meq/ 100 gm Size Fractio	EA meq/ 100gm ns	SC meq/ 100gm	Fe ₂ O ₃ Pct	CaCO ₃ Eq. Pct	Organic Matter Pct	K ppm	P Bray No.1 ppm
Depth in Horizon	8C1a (1:1) H ₂ O	8C1c (1:1) KCl	8D7 SMP Buff.	6N2z Ca meq/ 100gm Sand	6022 Mg meq/ 100gm	6022 K meq/ 100gm M	oP22 Na meq/ 100gm ineralogica	TEB meq/ 100gm I Analysis—	CEC meq/ 100gm Estimated P	5C1 Pct Percentages	5C3 Pct s in Various	H+Al meq/ 100 gm Size Fractio	EA meq/ 100gm ns	SC meq/ 100gm Clay	Fe ₂ O ₃ Pct	CaCO ₃ Eq. Pct	Organic Matter Pct	K ppm	P Bray No.1 ppm
Depth in Horizon	8C1a (1:1) H ₂ O	8C1c (1:1) KCI	8D7 SMP Buff.	6N2z Ca meq/ 100gm Sand	6022 Mg meq/ 100gm	6022 K meq/ 100gm M	Na meq/ 100gm ineralogica	TEB meq/ 100gm I Analysis—	CEC meq/ 100gm Estimated P	5C1 Pct Percentage:	5C3 Pct s in Various	H+AI meq/ 100 gm Size Fractio	EA meq/ 100gm ns	SC meq/ 100gm Clay K	Fe ₂ O ₃ Pct	CaCO ₃ Eq. Pct	Organic Matter Pct Gl	K ppm GO	P Bray No.1 ppm F
Feliciana, eroded

Pedon #: S03-KY-145-01

Classification: Fine-silty, mixed, active, thermic Ultic Hapludalfs

Location: McCracken County, KY; 2.5 miles east of Lovelaceville at the end of Trice Road. Lovelaceville 7.5' USGS Quad. Latitude: 36° 97' 36"N; Longitude: 88° 78' 29"W

Parent Material: Loess, > 4 Ft.

Vegetation: Fescue and Johnsongrass, CRP

Aspect:

Landscape Position: Upland ridgetop

Drainage: Well drained

Moisture when sampled: Dry 0 to 13 inches; moist 13 to 80 inches.

Sampling Date: 8/12/03

Permeability: Moderate

Slope: 4 %

Described by: J. E. McIntosh

Ap—0 to 4 inches; brown (10YR 4/3) silt loam; weak medium granular structure; very friable; many fine roots; slightly acid (pH 6.3); abrupt smooth boundary. Bt1—4 to 13 inches; strong brown (7.5YR 4/6) silty clay loam; moderate medium subangular blocky structure; firm; common fine roots; common distinct dark brown (7.5YR 4/3) clay skins in pores and on faces of peds; moderately acid (pH 6.0); clear smooth boundary.

Bt2—13 to 28 inches; strong brown (7.5YR 4/6) silty clay loam/silt loam; moderate medium subangular blocky structure; firm; fewfine roots; common distinct dark brown (7.5YR 4/3) clay skins in pores and on faces of peds; 2% prominent black (N 2.5/0) manganese or iron-manganese oxide stains on faces of peds; moderately acid (pH 6.0); clear smooth boundary.

Bt3—28 to 48 inches; strong brown (7.5YR 4/6) silt loam; moderate medium subangular blocky structure; friable; few fine roots; common distinct dark brown (7.5YR 4/3) clayskins in pores and on faces of peds; 5% prominent light yellowish brown (2.5Y 6/3) clay depletions (10YR 7/1 dry) on faces of peds; 1% prominent black (N 2.5/0) manganese or iron-manganese oxide stains on faces of peds; moderately acid (pH 5.6); gradual smooth boundary.

Bt4—48 to 65 inches; strong brown (7.5YR 4/6) silt loam; moderate fine and medium subangular blocky structure; friable; very few fine roots; few distinct brown (7.5YR 4/4) clay skins on faces of peds; 5% prominent light yellowish brown (2.5Y 6/3) clay depletions (10YR 7/1 dry) on faces of peds; strongly acid (pH 5.4); gradual smooth boundary.

BC—65 to 80 inches; strong brown (7.5YR 4/6) silt loam; weak medium subangular blocky structure; friable; 2% prominent light yellowish brown (2.5Y 6/3) clay depletions (10YR 7/1 dry) on faces of peds; strongly acid (pH 5.4).

									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ints
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
4-13	Bt ₁																		
13-28	Bt ₂																		
28-48	Bt ₃																		
48-65	Bt ₄																		
65-80	BC																		
		pH			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO	Matter	ĸ	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
4-13				7.13	2.72	0.39	0.06	10.30	13.70	75	59		7.25						
13-28				7.54	3.68	0.42	0.04	11.68	14.91	78	56		9.34						
28-48				3.13	3.19	0.28	0.04	6.64	11.56	57	43		9.90						
48-65				2.24	3.77	0.10	0.14	6.25	10.85	58	40		9.36						
65-80				2.56	3.98	0.09	0.18	6.81	10.59	64	47		7.57						
		-				M	lineralogical	Analysis—	Estimated P	Percentage	s in Various	Size Fractio	ns						-
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	К	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Gilpin loam

Pedon #: 90KY-027-01-(1-5)

Classification: Fine-loamy, mixed, active, mesic Typic Hapludults

Location: 4 miles south of Hardinsburg on Hwy. 261, in Breckinridge County, 1.5 miles southeast of Kirk, 700 feet east of the Kirk-Axtel Road, 100 feet south of a tributary of Tules Creek. Parent Material: Sandstone residuum on Hardinsburg member

Vegetation: Deciduous hardwoods

Landscape Position: Linear backslope

Drainage:

Moisture when sampled:

Sampling Date: 5/17/90

Permeability:

Slope: 25%

Described by:

A—0 to 3 inches; dark brown (10YR 3/3) loam; moderate fine and medium granular structure; very friable; many fine and medium roots, 10 percent sandstone channers; strongly acid; clear wavy boundary.

E—3 to 10 inches; yellowish brown (10YR5/6) loam; moderate fine and medium subangular blocky structure; friable; common fine and medium roots, 5 percent sandstone channers; very strongly acid; clear smooth boundary.

Bt1—10 to 18 inches; strong brown (7.5YR 5/6) loam; moderate medium subangular blocky structure; friable; common fine and medium roots; few thin clay films on ped faces; 5 percent sandstone channers; very strongly acid; clear smooth boundary. Bt2—18 to 24 inches; dark brown (7.5YR 4/4) channery loam; moderate medium subangular blocky structure; friable; few fine roots, common distinct clay films on ped faces; 30 percent (by volume) channers (2 to 76 mm); very strongly acid; clear smooth boundary.

Bt3—24 to 29 inches; strong brown (7.5YR 5/6) very channeryloam; moderate medium subangular blocky structure; friable; few fine roots, 55 percent (by volume) channers (2 to 76 mm); very strongly acid; clear wavy boundary.

Cr—29 to 44 inches; fractured sandstone rock.

SOIL TYPE	GILPIN
LOCATIONBRECKINRID	GE COUNTY, KENTUCKY

									Particle Size	Class and	Particle Dia	meter (mm))						
								3	A1								2/	A2	3B1a
			Total		1		Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	A	24.0	64.3	11.7	2.7	3.4	1.9	6.2	9.9							sil			
3-10	E	17.2	70.7	12.1	0.4	0.5	0.4	3.8	12.0							sil			
10-18	Bt ₁	11.4	68.0	20.6	0.7	0.3	0.3	2.0	8.3							sil			
18-24	Bt,	23.7	57.0	19.3	3.2	2.0	1.2	4.6	12.6							sil			
24-29	Bt,	38.1	45.4	16.5	9.0	3.5	1.2	5.0	19.3										
		рН	•		E	kchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Hagerstown, silt loam (Taxadjunct) Pedon #: \$94KY-135-21-(1-4) Classification: Fine, mixed, mesic, Typic Paleudalfs Location: Lewis County, Kentucky Parent Material:	Vegetation: Landscape Position: Drainage: Moisture when sampled: Sampling Date: Permeability: Slope:	Described by: Ap—0 to 10 inch; brown (10YR 4/3) silt loam; weak fine granular structure; friable; common fine roots; neutral; clear smooth boundary. Bt1—10 to 18 inches; dark yellowish brown (10YR4/6) silty clay loam; moderate fine and medium subangular blocky structure; firm; few fine roots; common fine manganese concretions; common faint clay films on peds; slightly acid; gradual smooth boundary.	Bt2—18 to 38 inches; strong brown (7.5YR 5/6) silty clay; moderate medium subangular blocky structure; firm; few fine roots; manyfine manganese concretions; many distinct clay films on peds; neutral; gradual smooth boundary. Bt3—38 to 76 inches; strong brown (7.5YR 5/8) clay; moderate thin platy and moderate fine subangular blocky structure; very firm; many fine and medium manganese concretions; many distinct clay films on peds; neutral.
---	--	---	--

SOIL TYPE...... HAGERSTOWN (TAXADJUNCT)

LOCATION	••••••		LEWIS COL	JNTY, KENT	UCKY	GENERA	L METHOD	5		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-10	Ар	11.0	72.4	16.6	2.1	1.7	1.3	1.7	4.2							sil			
10-18	Bt ₁	18.4	51.5	30.1	10.3	2.8	1.3	1.0	3.0							sicl			
18-38	Bt ₂	7.5	51.5	41.0	3.0	1.2	0.5	0.3	2.5							sic/sicl			
38-76	Bt ₃	5.4	50.4	44.2	0.8	0.7	0.5	0.5	2.9							sic			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V-HIV	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt1	100									42			11	28	8	6		3	2
Bt2										45			5	31	8	5		4	2

Hagerstown, silt loam (Taxadjunct)

Pedon #: S99KY-011-04-(1-5)

Classification: Fine-silty, mixed, semiactive, mesic Typic Paleudalfs

Location: Bath County, Kentucky; Preston NE Quarter Quad., update sheet 20T; about 1.4 mile N of Preston in Bath Co.; about 1 mile E/NE of Kendall Springs; and about 75 feet N of farm road on a broad flat ridge top. **Parent Material:** Silty and clayey residuum over New Albany Shale over Bisher Dolomite

Vegetation: Alfalfa and a minor component of orchardgrass

Landscape Position: Ridge top

Drainage:

Moisture when sampled: moist

Sampling Date: 02/11/99

Permeability:

Slope: 3%

Described by: D. Hines and S. Jacobs

Ap—0 to 15 inches (0 to 38 cm); brown (10YR 4/3) silt loam; weak fine and medium granular structure; friable; common fine roots; very strongly acid; gradual smooth boundary.

Bt1—15 to 24 inches (38 to 61 cm); brown (7.5YR 4/4) silt loam; weak fine and medium subangular blocky structure; friable; few fine roots; few faint clay films on faces of peds; very strongly acid; gradual smooth boundary.

Bt2—24 to 34 inches (61 to 86 cm); reddish brown (5YR 4/4) silty clay loam; moderate medium subangular blocky structure; common fine and medium black stains; common faint clay films on faces of peds; moderately acid; diffuse smooth boundary. Bt3—34 to 60 inches (86 to 152 cm); yellowish red (5YR 4/6) silty clay loam; moderate medium subangular blocky structure; firm; many medium black stains; 2 percent fine concretions; many distinct clay films on faces of peds; moderately acid; diffuse smooth boundary.

Bt4—60 to 92 inches (152 to 234 cm); yellowish red (5YR 5/6) silty clay loam; weak medium subangular blocky structure; firm; common medium black stains; 1 percent fine concretions; strongly acid.

									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	nts
Depth in	Horizon	Sand (2-0.05)	Silt (0.05- 0.002)	Int. IV Clay <0.002	Very Coarse (2-1)	Coarse (1-0.5)	Medium (0.5-0.25)	Fine (0.2501)	Very Fine (0.1-0.05)	(0.05- 0.02)	Int. III (.02002)	Int. II (0.2-0.02)	Int. I (2-0.2)	Coarser Than VF (2-0.1)	Silt (0.1- 0.002)	Textural Class	>2 Pct	2-19 Pct of <76mm	19-76 Pct of <76mm
0-15	Ap	7.1	78.3	14.6	0.4	1.5	1.6	2.0	1.6	,	((,	(,	(_ 011)		sil			
15-24	Bt,	11.0	61.1	27.9	1.2	3.7	2.9	1.6	1.6							sil/sicl			
24-34	Bt	10.4	57.6	32.0	0.7	3.8	2.6	1.7	1.6		1					sicl			
34-60	Bt,	10.5	52.4	37.1	1.6	3.4	2.3	1.5	1.7					1		sicl			
60-92	Bt	9.8	53.8	36.4	2.2	2.9	1.8	1.4	1.5							sicl			
		рН			E	changeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
Depth in	8C1a (1:1) H ₂ O	8C1c (1:1) KCl	8D7 SMP Buff.	6N2z Ca meq/ 100gm	602z Mg meq/ 100gm	602z K meq/ 100gm	6P2z Na meq/ 100gm	5B1a TEB meq/ 100gm	5A1z CEC meq/ 100gm	5C1 Pct	5C3 Pct	H+Al meq/ 100 gm	EA meq/ 100gm	SC meq/ 100gm	Fe ₂ O ₃ Pct	CaCO ₃ Eq. Pct	Organic Matter Pct	K ppm	P Bray No.1 ppm
						м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Hazleton, very channery loam (Taxadjunct)

Pedon #: \$94KY-119-06-(1-4)

Classification: Loamy-skeletal, mixed, active, mesic Typic Dystrudepts

Location: Knott County, Kentucky, Wayland Topographic Quadrant; about 0.1 miles up Thornsberry Branch from the mouth of Gibson Creek in gas well road cut by a pumping station. x: 2,843,400, y: 398,380

Parent Material: Colluvium of Pennsylvanian and Middle Breathitt

Vegetation: American beech, yellow-poplar, and sassafras

Landscape Position: Side slope

Drainage:

Moisture when sampled:

Sampling Date: 7/27/94

Permeability:

Slope: 60%

UATI FTON (TAYAD UNICT)

Described by: P.S. Aldridge

A-0 to 7 inches; dark grayish brown (10YR 4/2) very channery loam; weak fine granular structure; very friable; many fine, medium and coarse roots; 45 percent sandstone channers; moderately acid; clear smooth boundary.

BA-7 to 14 inches; yellowish brown (10YR 5/4) very channery loam; moderate medium subangular blocky structure; friable; common fine and medium roots; 35 percent sandstone channers; slightly acid; clear wavy boundary.

Bw1-14 to 32 inches; yellowish brown (10YR 5/6) very channery sandy loam; weak fine subangular blocky structure; friable; few fine roots; 40 percent sandstone channers and 20 percent sandstone flagstones; moderately acid; gradual smooth boundary.

Bw2-32 to 48 inches; yellowish brown (10YR 5/6); very channery sandy loam; moderate fine subangular blocky structure; firm; few fine roots; 45 percent sandstone channers; moderately acid; clear wavy boundary.

Bw3-48 to 58 inches; yellowish brown (10YR 5/6) channery sandy loam; moderate medium subangular blocky structure; friable; very few, very fine roots; 20 percent sandstone channers; moderately acid; clear smooth boundary.

BC-58 to 65 inches; yellowish brown (10YR 5/6) very channery sandy loam; weak coarse subangular blocky structure; firm; very few, very fine roots; 45 percent sandstone channers; moderately acid.

SOIL TYPE		HAZLETON (TAXADJUNCT)	PEDON #	\$94-119-006-(1-4)
LOCATION	••••••	KNOTT COUNTY, KENTUCKY	GENERAL METHODS	1A1 1A2 1B1B 2A1
			Particle Siz	ze Class and Particle Diameter (mm)
1			241	

DED ON

								3	A1								2/	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural	1	Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-7	A	51.3	40.0	8.7	4.7	5.8	14.3	18.7	7.8							l/sl			
7-14	BA	51.3	35.3	13.4	4.4	5.1	14.2	19.1	8.5							l/sl			
14-32	Bw ₁	61.3	29.3	9.4	7.2	7.5	16.5	20.7	9.4							sl			
32-48	Bw ₂	51.2	35.0	13.8	4.1	5.1	13.8	19.2	9.0							l/sl			
		pH			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z]				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogical	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
BA	71	29																	
Bw1	60	28	3	9															
Bw2	52	26	22																

504 440 005 (A A)

Hazleton, very channery sandy loam

Pedon #: S94KY-159-01-(1-5)

Classification: Loamy-skeletal, mixed, mesic Typic Dystrudepts

Location: Martin County, Kentucky, 7 miles southwest of Inez on Kentucky Highway 3 to Wolf Creek Road, 3 miles south to an intermittent drain between Right Fork and Straight Fork of Panther Fork of Wolf Creek; Thomas quadrangle $\label{eq:parentMaterial:Colluvium from inter-bedded sands to ne and silts to ne$

Vegetation:

Landscape Position: Side slope

Drainage: Well drained

Moisture when sampled:

Sampling Date:

Permeability: Moderately rapid to rapid **Slope:** 30 to 80%

. Described bv: Oa—1 to 0 inches; highly decomposed hardwood leaf litter.

A—0 to 2 inches; very dark grayish brown (10YR 3/2) very channery sandy loam; weak fine granular structure; very friable; many fine roots; 40 percent sandstone channers; medium acid; abrupt wavy boundary.

Bw1—2to7inches; light yellowish brown (10YR6/4) channery sandy loam; moderate fine and medium subangular blocky structure; friable; many fine, medium and coarse roots; 35 percent sandstone channers and flagstones; strongly acid; clear wavy boundary.

Bw2—7 to 19 inches; brownish yellow (10YR 6/6) extremely channery sandy loam; moderate fine and medium subangular blocky structure; friable; many fine, medium and coarse roots; 70 percent sandstone channers and flagstones; very strongly acid; clear wavy boundary.

Bw3—19 to 40 inches; brownish yellow (10YR 6/6) extremely channery sandy loam; moderate fine and medium subangular blocky structure; firm; common fine, medium and coarse roots; 75 percent sands tone channers and flagstones; very strongly acid; gradual smooth boundary.

Bw4—40 to 75 inches; yellowish brown (10YR 5/4) extremely channery sandy loam; weak medium subangular blocky structure; firm; few fine roots; 75 percent sandstone channers and flagstones; very strongly acid.

SOIL TYPE. LOCATION		M	ARTIN COL	HAZL JNTY, KENT	ETON UCKY	PEDON # GENERA	# L METHODS	S		S94-159-0 1A1 1A2 1	001-(1-5) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total		1		Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-2	A																	'	
2-7	Bw ₁																	'	
7-19	Bw ₂																	'	
19-40	Bw3																	ا ا	
40-75	Bw ₄																	ļ'	
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z									1	
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic	1	P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	K	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-2				0.65	0.11	0.15	0.01	0.94	7.9	12	8		11.4	12.3					
2-7				0.05	0.02	0.09	0.01	0.17	3.94	4	4		4.7	4.9					
7-19				0.05	0.03	0.11	0.01	0.20	3.87	5	1		14.3	14.5					
19-40				0.27	0.43	0.14	0.01	0.85	5.44	16	16		4.5	5.4					
40-75				0.15	0.47	0.12	0.01	0.74	5.09	15	13		5.0	5.8					
					·	м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Helechawa, sand (Taxadjunct)

Pedon #: \$94KY-205-01(1-6)

Classification: Sandy, siliceous, mesic Typic Udipsamment

Location: Rowan County, Kentucky, 2,450 feet southeast of benchmark number 733; Morehead Quadrangle

Parent Material: Colluvium weathered from sandstone

Vegetation:

Landscape Position: Upper mountain side slopes and lower crests and saddles

Drainage: Somewhat excessively drained

Moisture when sampled:

Sampling Date:

Permeability: Moderately rapid

Slope: 30 to 50 percent

Described by:

Oi—1 to 0 inches; partially decomposed hardwood leaf litter.

A1—0to4inches; very dark grayish brown (10YR3/2) sand; weak fine granular structure; very friable; many fine and medium roots; 2 percent sandstone and quartz pebbles; slightly acid; gradual smooth boundary.

A2—4 to 7 inches; brown (10YR 4/3) sand; weak medium subangular blocky parting to weak fine granular structure; very friable; common fine and medium roots; 2 percent quartz pebbles; strongly acid; clear smooth boundary.

Bw1—7 to 14 inches; yellowish brown (10YR 5/4) loamy sand; weak medium subangular blocky structure; very friable; common fine and medium roots; 1 percent quartz pebbles; strongly acid; clear smooth boundary. Bw2—14 to 27 inches; brownish yellow (10YR 6/6); loamy sand; weak medium subangular blocky structure; friable; few fine and medium roots; 3 percent quartz pebbles; strongly acid; gradual smooth boundary.

Bw3—27 to 45 inches; light yellowish brown (10YR 6/4) loamy sand; weak medium subangular blocky structure; few fine and medium roots; 5 percent quartz pebbles; strongly acid; gradual smooth boundary.

BC—45 to 70 inches; light yellowish brown (10YR 6/4) sandy loam; weak medium subangular blocky structure; friable; few fine and medium roots; 5 percent quartz pebbles; strongly acid.

SOIL TYPE	HELECHAWA (TAXADJUNCT)
LOCATION	ROWAN COUNTY, KENTUCKY

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-4	Α,	91.3	5.6	3.1	0.9	12.9	54.6	21.2	1.7							S			
4-7	A,	90.9	4.8	4.3	1.2	11.0	51.3	25.2	2.2							S			
7-14	Bw,	89.3	7.7	3.0	1.3	10.1	50.5	25.1	2.3							s/ls			
14-27	Bw ₂	90.1	6.6	3.3	1.2	8.1	47.6	29.9	3.3							s/ls			
27-45	Bw,	87.0	9.3	3.7	1.4	7.3	42.8	32.0	3.5							s/ls			
45-70	BC	76.7	12.6	10.7	1.4	6.0	39.1	27.3	2.9							sl			
		рН			Ex	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						Mi	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Huntington, silt loam (Taxadjunct)

Pedon #: \$93KY-239-04-(1-4)

Hapludolls

farm.

•

Parent Material: Mixed alluvium Vegetation: Bluegrass, orchard grass, hay field Landscape Position: Upland sinkhole Drainage: Moisture when sampled: Moist Classification: Fine silty, mixed, active, mesic Cumulic Sampling Date: 7/8/93 Location: Woodford Co., KY; University of Kentucky Permeability:

Slope: 1%

Described by: D. Hines

A-0 to 18 inches (0 to 46 cm); dark brown (10YR 3/3) silt loam; weak fine and medium granular structure; very friable; neutral; gradual smooth boundary.

Bw1—18 to 38 inches (46 to 97 cm); dark brown (10YR 3/3) silt loam; weak medium subangular blocky structure; very friable; slightly acid; gradual smooth boundary.

Bw2—38 to 62 inches (97 to 157 cm); very dark grayish brown (10YR 3/2) silt loam; weak medium subangular blocky structure; friable; slightly acid; gradual smooth boundary.

Bw3—62 to 86 inches (157 to 218 cm); dark brown (10YR 4/3) silt loam; moderate medium subangular blocky structure; friable; neutral.

SOIL TYPE		H	UNTINGTO	N (TAXADJU	JNCT)	PEDON #	#	•••••		93KY-239	-04-(1-4)								
LOCATION	••••••	WOOI	DFORD COL	UNTY, KENT	UCKY	GENERA	L METHOD	S		.1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm))						
								3	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-18	A	8.1	67.9	24.0	0.7	1.8	2.2	2.1	1.3							sil			
18-38	Bw ₁	7.7	66.7	25.6	1.5	1.9	1.4	1.6	1.3							sil			
38-62	Bw ₂	10.0	64.4	25.6	1.3	3.4	2.1	1.5	1.7							sil/sicl			
62-86	Bw ₃	12.5	56.7	30.8	1.8	4.1	3.1	2.0	1.5							sicl			
		рН	-		E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-18	6.25		6.62														3.95	250+	100+
18-38	6.10		6.50														3.11	250+	100+
38-62	6.48		6.64														3.40	250+	100+
62-86	6.48		6.71														1.54	245.5	100+
						м	ineralogica	l Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	К	CL	INT	RE	CA	SM	V	HIV	CL	INT	К	MI	Q	GI	GO	F

Minerals: SM = smectite; V = vermiculite; HIV = hydroxyinterlayered vermiculite; CL = chlorite; INT = interstratified; K = kaolinite; MI = mica; Q = quartz; GO = goethite; GI = gibbsite; F = feldspars; CA = calcite; RE = other resistant minerals

44

Huntington silt loam

Pedon #: \$93-KY-239-18-(1-5)

Classification: Fine-silty, mixed, active, mesic Fluventic Hapludolls

Location: Woodford Co., KY; University of Kentucky farm.

SOIL TYPE.....HUNTINGTON

Parent Material: Alluvium Vegetation: Fescue, clover hay field Landscape Position: Floodplain Drainage: Moisture when sampled: Moist Sampling Date: 10/12/93 Permeability: Slope: 1% Described by: A—0 to 18 inches (0 to 46 cm); dark brown (10YR 3/3) silt loam; weak medium subangular blocky structure parting to weak fine granular; friable; many fine roots; slightly acid; gradual smooth boundary.

Bw1—18 to 29 inches (46 to 74 cm); dark yellowish brown (10YR 3/4) silt loam; weak medium subangular blocky structure; friable; common fine roots; moderately alkaline; gradual smooth boundary.

Bw2—29 to 65 inches (74 to 165 cm); brown (10YR 4/3) silt loam; weak fine and medium subangular blocky structure; friable; few fine roots; 2 percent chert fragments; moderately alkaline; clear smooth boundary. 2Bt—65 to 68 inches (165 to 224 cm); dark yellowish brown (10YR 4/6) silty clay; weak medium angular blocky structure; firm; common faint clay films on faces of peds; common fine manganese concretions; mildly alkaline.

C—88 to 94 inches (224 to 239 cm); dark yellowish brown (10YR 4/6) clay; massive; firm; common fine manganese concretions; mildly alkaline.

OCATION	•••••		DFORD CO	UNTY, KENT	UCKY	GENERA	L METHOD	S	••••••	.1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragm	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-18	A	6.1	73.9	20.0	1.0	1.1	1.1	1.4	1.5							sil			
18-29	Bw,	3.4	70.8	25.8	0.3	0.5	0.5	0.9	1.2							sil/sicl	1		
29-65	Bw ₂	7.5	65.2	27.3	0.9	1.4	1.4	1.8	2.0							sil/sicl			
65-88	2Bt	10.2	55.8	34.0	1.4	2.4	2.4	2.3	1.7							sicl			
88-94	С	18.3	40.2	41.5	2.3	5.0	4.3	4.1	2.6		1				1	sic/c	1	1	
		рН			E	kchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
		1		6N2z	602z	602z	6P2z	5B1a	5A1z		1				1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-18	7.28		7.05														3.88	105	100+
18-29	7.44		7.09														3.45	78	100+
29-65	7.42		7.06														3.54	114	100+
65-88	7.32		6.94				1										1.17	161	100+
88-94	7.04		6.80				1										0.89	198.5	100+
	÷	•		•	•	м	ineralogica	Analysis—	Estimated P	Percentage	s in Various	Size Fractio	ns	•		•	•	•	
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
	1	1	İ	1	İ	İ	1		İ								1		1

Minerals: SM = smectite; V = vermiculite; HIV = hydroxyinterlayered vermiculite; CL = chlorite; INT = interstratified; K = kaolinite; MI = mica; Q = quartz; GO = goethite; GI = gibbsite; F = feldspars; CA = calcite; RE = other resistant minerals

Kinnick, silt loam

Pedon #: Classification: Fine-silty, mixed, active, mesic Dystric Fluventic Eutrudepts Location: Madison Co., KY near Moberly on the EKU Meadowbrook Farm

Parent Material: Alluvium

Vegetation: Landscape Position: Flood plain Drainage: Moisture when sampled: Sampling Date: Sept., 1999 Permeability: Slope: 0-2% Described by: A.D. Karathanasis and Bill Craddock Ap—0 to 3 in.; Dark brown (10YR 3/3) silt loam; weak granular structure; friable; clear boundary.

Bw1—3 to 11 in.; Brown (10YR 4/3) silt loam; weak subangular blocky; friable; clear boundary.

Bw2—11 to 19 in.; Brown (10YR 4/3) silt loam; weak subangular blocky; friable, clear boundary.

Bw3—19 to 30 in.; Brown (10YR 4/3) silt loam; moderate subangular blocky; friable; clear boundary.

Bw4—30 to 38 in.; Dark grayish brown (10YR 4/2) silt loam/silty clay loam; moderate subangular blocky; common distinct redox depletions and concretions; firm; clear boundary.

BC—38 to 46 in.; Dark grayish brown (10YR 4/2) silt loam/ silty clay loam; weak subangular blocky; common distinct redox concentrations; firm; clear boundary.

Cg—46 to 51 in.; Dark grayish brown (10YR 4/2) silt loam/ silty clay loam; massive structureless; common distinct redox concentrations; firm.

SOIL TYPE.	L TYPEKINNICK					PEDON #	#												
LOCATION	••••••	MA	DISON COL	JNTY, KENT	UCKY	GENERA	L METHOD	S		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	Ар	12.1	74.5	13.4	0.8	2.0	2.0	3.0	4.3							sil			
3-11	Bw ₁	8.6	75.5	15.9	0.9	0.8	1.1	2.3	3.5							sil			
11-19	Bw ₂	6.1	71.9	22.0	0.1	0.1	0.4	2.1	3.4							sil			
19-30	Bw ₃	1.8	71.4	26.8	0	0	0.1	0.3	1.5							sil/sicl			
30-38	Bw ₄	2.4	72.5	25.1	0	0.1	0.1	0.4	1.7							sil/sicl			
38-46	BC	2.4	69.0	28.6	0	0.1	0.2	0.5	1.7							sicl/sil			
46-51	Cg	1.7	68.4	29.9	0	0.1	0.1	0.4	1.1							sicl			
		рН			E	kchangeab	le Bases (5A	.1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										1
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-3	6.75																2.82		
3-11	6.97																1.85		
11-19	7.16																		
19-30	7.11																		
30-38	7.16																		
38-46	7.04																		
46-51	6.93																		1
						M	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon	<u> </u>			Sand	+ Silt						· · · · ·			Clay					
	Q	F	MI	К	CL	INT	RE	CA	SM	V	HIV	CL	INT	К	MI	Q	GI	GO	F
																			1

Lakin, fine sandy loam

Pedon #: S90KY-135-010-1-6)

SOU TYPE

Classification: Mixed, mesic Lamellic Udipsamments

Location: Lewis County, Kentucky; Atlas sheet 6; about 1.7 miles south of Sandhill, about 720 feet east of Sandhill Road, about 500 feet west of Crooked Creek, on bluff above floodplain. Latitude: 38° 38' 55"; Longitude: 83° 37' 43"; x: 2,177,400 feet; y: 418,800 feet

Parent Material: Sandy alluvium on the Ohio River floodplain, Quaternary Geologic System **Vegetation:** Sugar maple, American beech, northern red oak woodland

Landscape Position: Side slope

Drainage:

Moisture when sampled: Moist

DEDON #

Sampling Date: 6/25/90

Permeability: Slope: 60%

Described by: S. Jacobs and D. Dotson

A—0 to 8 inches (0 to 20 cm); dark yellowish brown (10YR 4/4) fine sandy loam; weak fine granular structure; very friable; common fine and medium roots; very strongly acid; clear wavy boundary.

Bw1—8 to 20 inches (20 to 51 cm); yellowish brown (10YR 5/4) fine sandy loam; very weak fine granular and single grain structure; very friable; common fine and medium roots; 1% rounded pebbles 2 to 5 mm in size; very strongly acid; gradual smooth boundary.

Bw2—20 to 27 inches (51 to 69 cm); yellowish brown (10YR 5/4) sandy loam with discontinuous brown fine sandy loam lamellae and lumps; single grain; very friable;

common fine roots; few fine rounded pebbles; medium acid; gradual wavy boundary.

Bw3—27 to 42 inches (69 to 107 cm); yellowish brown (10YR 5/4) sandy loam with discontinuous brown fine sandy loam lamellae and lumps; single grain; very friable; common fine roots; dark brown (10YR 3/3) organic stains on sand grains; strongly acid; clear wavy boundary.

C—42 to 60 inches (107 to 152 cm); dark yellowish brown (10YR 4/6) gravelly sand; very friable; few fine roots; 15 to 20% gravels; strongly acid; clear wavy boundary.

2Cr—60 inches (152 cm); calcareous shale; medium acid.

LOCATION	ATION LEWIS COUNTY, KENTUCKY						L METHOD	S		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	ameter (mm)						
								3/	A1								2	A2	3B1a
			Total				Sand			S	Silt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very	1			Very		1	1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-8	A	44.7	41.4	13.9	0.9	3.3	22.6	17.8	0.1						1				
8-20	Bw1	86.0	6.4	7.6	2.5	10.1	32.3	35.5	5.6						1	ls			
20-27	Bw ₂	92.6	2.7	4.7	2.6	52.1	0	35.4	2.5						1	s			
27-42	Bw,	91.4	1.8	6.8	9.7	61.4	0	19.8	0.5						1	s			
42-60	C	95.0	0.4	4.6	13.2	73.2	0	7.9	0.7						1	s			
60+	Cr	1.8	49.1	49.1	0.2	1.1	0	0.2	0.3						1	sic			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	M	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GÖ	F

SONKV-135-010-(1-6)

Lakin, loamy fine sand

Pedon #: S90KY-135-011-(1-6)

Classification: Mixed, mesic Lamellic Udipsamments

Location: Lewis County, Kentucky; Atlas sheet 6; about 1.6 miles south of Sandhill, about 150 feet west of Sandhill Road, and about 100 feet southeast of Chesapeake and Ohio railroad tracks. Latitude: 38° 39'06"; Longitude: 83° 37'55"; x: 2,176,680 feet; y: 420,000 feet

Parent Material: Sandy alluvium on the Ohio River floodplain, Quaternary Geologic System

Vegetation: Johnson grass, soybeans, edge of crop field

Landscape Position: Terrace

Drainage:

Moisture when sampled: Moist

Sampling Date: 6/25/90

Permeability:

Slope: 2%

Described by: S. Jacobs and D. Dotson

Ap—0 to 12 inches (0 to 30 cm); dark brown (10YR 4/3) loamy fine sand; weak fine granular and single grain structure; very friable; common fine roots; moderately alkaline; abrupt smooth boundary.

Bw1—12 to 21 inches (30 to 53 cm); yellowish brown (10YR5/6) loamy sand; single grain, weak fine and medium

subangular blocky structure in lamellae; very friable; strong brown (7.5YR 4/6) very wavy and semi-continuous brown fine sandy loam lamellae; moderately alkaline; clear smooth boundary.

Bw2—21 to 32 inches (53 to 81 cm); yellowish brown (10YR 5/6) loamy sand; single grain, weak fine and medium subangular blocky structure in lamellae; very friable; strong brown (7.5YR 4/6) wavy semi-continuous brown fine sandy loam lamellae; moderately alkaline; clear smooth boundary.

Bw3—32 to 54 inches (81 to 137 cm); brownish yellow (10YR 6/6) sand; sand grains are coated and uncoated, 40% uncoated; single grain, weak fine and medium subangular blocky structure in lamellae; very friable; dark yellowish brown (10YR 4/6) wavy continuous brown fine sandy loam lamellae; moderately alkaline; abrupt smooth boundary.

Bw4—54 to 58 inches (137 to 147 cm); brownish yellow (10YR 6/6) sandy loam; sand grains are coated and uncoated; single grain, weak fine and medium subangular blocky structure in lamellae; very friable; yellowish brown (10YR5/6) wavy continuous brown fine sandy loam lamellae; moderately alkaline; abrupt smooth boundary.

B/C—58 to 96 inches (147 to 249 cm); brownish yellow (10YR 6/6) sand; sand grains are coated and uncoated, 50% uncoated; single grain, weak fine and medium subangular blocky structure in lamellae; very friable; dark yellowish brown (10YR 4/6) sandy loam lamellae; moderately alkaline.

SOIL TYPE	LAKIN	PEDON #	.S90KY-135-011-(1-6)
LOCATIONL	EWIS COUNTY, KENTUCKY	GENERAL METHODS	1A1 1A2 1B1B 2A1

									Particle Size	Class and	Particle Dia	meter (mm)						
								3	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-12	Ар	88.6	5.1	6.3	0.1	4.6	51.6	24.8	7.5							ls/s			
12-21	Bw ₁	95.1	3.0	1.9	0	3.0	62.5	28.0	1.6							S			
21-32	Bw ₂	93.7	2.6	3.7	0	2.5	62.0	25.5	3.7		1			1		S			1
32-54	Bw ₃	97.1	0.8	2.1	0	4.1	68.1	24.4	0.5		1			1		S			1
54-58	Bw,	86.0	8.8	5.2	0	3.2	53.8	24.0	5.0		1			1		ls/s			
58-96	B/C	87.7	11.1	1.2	0	0.9	62.0	22.6	2.2		1			1		s/ls			1
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z		1			1	1				1
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meg/	meg/	meq/	meq/	meg/	meq/	5C1	5C3	meq/	meq/	meg/	Fe ₂ O ₂	CaCO	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
											1			1					
	÷					м	ineralogica	Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns	•	•				
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
	1											1		1					

Lawrence, silt loam

Pedon #: Classification: Fine-silty, mixed, semiactive, mesic A Fragiudalfs

Location: Madison Co, KY, near Moberly on the EK Meadowbrook Farm.

Parent Material: Residuum

Vegetation:

	Landscape Position: Upland	Ap—0 to 18 cm.; Brown (10YR 4/3) silt loam; weak granu-
	Drainage:	lar structure; friable; common manganese concretions;
	Moisture when sampled:	= 10 + 25 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1
Aquic g	Sampling Date: Sept. 1999	E— 18 to 35 cm.; Light yellowish brown (2.5Y 6/4) silt loam; weak subangular blocky structure; friable; common distinct
I	Permeability:	redox depletions and concretions; clear boundary.
EKU	Slope: 0-2%	BE—35 to 54 cm.; Olive yellow (2.5Y 6/6) silt loam; moder-
	Described by: A.D. Karathanasis and Bill Craddock	ate subangular blocky structure; friable; common distinct redox depletions and concretions; gradual boundary.

Btx1—54 to 95 cm.; Yellowish brown (10YR 5/6) silt loam; moderate prismatic structure; firm; common distinct redox depletions and concretions; gradual boundary.

Btx2—95 to 123 cm.; Yellowish brown (10YR 5/6) silt loam/ silty clay loam; moderate prismatic structure; firm; common distinct redox depletions and concretions; gradual boundary.

C—123 to 150+ cm.; Dark yellowish brown (10YR4/4) silty clay loam; massive structureless; firm; common distinct redox depletions and concretions; clear boundary.

SOIL TYPE LAWRENCE	PEDON #
LOCATION MADISON COUNTY, KENTUCKY	GENERAL METHODS 1A1 1A2 1B1B 2A1

		Particle Size Class and Particle Diameter (mm)																	
								3	A1								2/	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
cm	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-18	Ар	23.8	66.0	10.2	10.2	5.1	2.8	2.6	3.1							sil			
18-35	E	14.4	69.6	16.0	7.1	2.6	1.1	1.3	2.3							sil			
35-54	BE	11.0	68.9	20.1	3.6	2.8	1.0	1.1	2.5							sil			
54-95	Btx ₁	11.8	64.0	24.2	4.0	2.5	1.3	1.5	2.5							sil			
95-123	Btx,	11.3	59.5	29.2	3.6	2.7	1.5	1.7	1.8							sicl/sil			
123-150	C	14.6	51.2	34.2	3.7	3.9	3.5	3.3	0.2							sicl			
		pН			E	xchangeab	le Bases (5A	(1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1
cm	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-18	5.87																1.16		
18-35	5.65																0.22		
35-54	4.25																		
54-95	4.24																		
95-123	4.42																		
123-150	6.43						1				1								
					•	м	ineralogica	Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns			•			
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Lily, fine sandy loam (Taxadjunct)

Pedon #: S91KY-175-011-(1-5)

Classification: Fine-loamy, mixed, semiactive, mesic Typic Hapludults

Location: Morgan Co., 1500 feet north east of confluence of Flaxseed Branch and Open Fork; 2.5 miles north east of Ebon near Cave Run Lake. Ezel 7.5 minute USGS quadrangle; Kentucky coordinate system. x: 2,240,490, y: 176,940. Parent Material: Residuum of Pennsylvanian Lower Breathitt Sandstone

Vegetation: Upland oak species

Landscape Position: Ridge top crest

Drainage:

Moisture when sampled:

Sampling Date: 3/13/90

Permeability:

Slope: 18%

Described by: JDM

A—0 to 3 inches; brown (10YR 4/3) fine sandy loam; weak fine granular structure; very friable; common fine and medium roots; 5% sandstone channers; strongly acid; clear smooth boundary.

BE—3 to 8 inches; brownish yellow (10YR 6/6) fine sandy loam; weak medium granular structure; very friable; common fine and medium roots; 5% sandstone channers; very strongly acid; clear smooth boundary.

Bt1—8 to 22 inches; strong brown (7.5YR 5/8) loam; weak medium subangular blocky structure; very friable; common fine and medium and few coarse roots; common thin (7.5YR 5/6) clay films on faces of peds; 5% sandstone channers; very strongly acid; gradual smooth boundary. Bt2—22 to 30 inches; strong brown (7.5YR 5/8) channery loam; moderate medium subangular blocky structure; friable; common fine and medium roots; common thin (7.5YR 5.6) clay film on faces of peds and on rock fragments; 20% weathered (easily crushed between thumb and forefinger) sandstone channers; very strongly acid; gradual smooth boundary.

BC—30 to 38 inches; strong brown (10YR 5/8) channery loam with common medium prominent strong brown (7.5YR 5/6) mottles; weak medium subangular blocky structure; friable; few fine and medium roots; extremely acid; abrupt smooth boundary.

R-38 inches; sandstone bedrock.

SOIL TYPE.	PELILY (TAXADJUNCT)					PEDON #	ŧ		S9	1KY-175-0)11-(1-5)								
LOCATION		MO	RGAN COU	JNTY, KENT	UCKY	GENERA	L METHOD	5		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	\1								2A	2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	A	56.0	27.2	16.8	2.8	4.9	3.7	31.5	13.1							sl			
3-8	BE	48.9	36.0	15.1	0.5	0.9	1.5	32.8	13.2							Ι			
8-22	Bt ₁	57.2	23.0	19.8	0.3	1.1	2.6	39.8	13.4							sl/scl			
22-30	Bt,	62.3	23.0	14.7	0	1.3	4.4	47.0	9.6							sl			
	_	pН			Ex	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	-																		
						Mi	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt,	90		6	4							Ì	i i							
Bt,	80		15	5															

Lindside, silt loam (Taxadjunct)

Pedon #: S93KY-239-014-(1-5)

Classification: Fine-silty, mixed, active, mesic Fluvaquentic Hapludolls

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Alluvium Vegetation: Fescue, clover pasture field Landscape Position: Floodplain Drainage: Moisture when sampled: Moist Sampling Date: 10/5/93 Permeability: Slope: 1.5% Described by: A—0 to 10 inches (0 to 25 cm); dark brown (10YR 3/3) silt loam; weak medium subangular blocky structure parting to weak fine granular; friable; many fine roots; moderately alkaline; gradual smooth boundary.

Bw1—10 to 21 inches (25 to 53 cm); brown (10YR 4/3) silt loam; weak medium subangular blocky structure; friable; common fine roots; moderately alkaline, clear smooth boundary.

Bw2—21 to 29 inches (53 to 74 cm); yellowish brown (10YR 5/4) silty clay loam; common medium faint grayish brown (10YR 5/2) and brown (10YR 5/3) mottles; moderate medium subangular blocky structure; firm; few fine roots; moderately alkaline; clear wavy boundary. Bw3—29 to 36 inches (74 to 91 cm); yellowish brown (10YR 5/4 and 10YR 5/6) clay; many medium distinct grayish brown (10YR 5/2) and pale brown (10YR 6/3) mottles; moderate medium subangular blocky structure; firm; few fine roots; 3 percent manganese concretions; moderately alkaline; clear smooth boundary.

C—36 to 43 inches (91 to 109 cm); dark yellowish brown (10YR 4/6), dark gray (10YR 4/1), and grayish brown (10YR 5/2) clay; structureless; very firm; moderately alkaline; clear smooth boundary.

R—43 inches (109 cm); hard limestone bedrock.

SOIL TYPE.	L TYPE LINDSIDE (TAXADJUNCT) ATIONWOODFORD COUNTY, KENTUCKY					PEDON # GENERA	# L METHOD	S	S9	3KY-239-0 1A1 1A2 1	014-(1-5) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents
Depth	Horizon	Sand (2-0.05)	Silt (0.05-	Int. IV Clay	Very Coarse	Coarse	Medium	Fine (0.25- 01)	Very Fine	(0.05-	Int. III	Int. II	Int. I (2-0-2)	Coarser Than VF	Silt (0.1-	Textural	>2 Pct	2-19 Pct of	19-76 Pct of
0-10	An	13.5	66.4	20.1	30	26	26	29	24	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	cil	~2FCC	\70	
10-21	Bw	93	63.6	27.1	3.0	2.0	17	1.0	11							sil/sicl			<u> </u>
21-29	Bw	6.4	64.5	29.1	1.2	1.7	1.3	1.1	1.1							sicl			<u> </u>
29-36	Bw.	12.0	56.3	31.7	1.1	2.1	3.1	3.2	2.5		1					sicl			
36-43	C,	20.0	2.0 30.5 31.7 11.1 2.1 31.2 2.5 0.0 38.6 41.4 1.7 2.7 4.5 6.9 4.2													с			
	· · · · · · · · · · · · · · · · · · ·	pН			E	kchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z		1				1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	K	No.1
in	H ₂ O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-10	6.75		6.86														3.92	63	100+
10-21	6.73		6.82														1.17	75.5	100+
21-29	6.80		6.90														0.81	86.5	100+
29-36	6.89		6.92														0.60	123	100+
36-43	7.29		7.04														1.24	131	100+
						М	ineralogical	l Analysis—	Estimated F	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Lindside, silt loam (Taxadjunct)

Pedon #: S93KY-239-017-(1-4)

Classification: Fine, mixed, active, mesic Fluvaquentic Eutrudepts

 $\ensuremath{\textbf{Location:}}$ Woodford Co., KY; University of Kentucky farm.

Parent Material: Alluvium Vegetation: Bluegrass, fescue pasture Landscape Position: Floodplain Drainage: Moisture when sampled: Moist Sampling Date: 10/7/93 Permeability: Slope: 1%

Described by:

A—0 to 10 inches (0 to 25 cm); brown (10YR 4/3) silt loam; weak fine and medium granular structure; very friable; many fine roots; moderately alkaline; clear smooth boundary.

Bw1—10 to 18 inches (25 to 46 cm); dark yellowish brown (10YR4/4) silty clay loam; weak medium subangular blocky structure; friable; common fine roots; moderately alkaline, gradual smooth boundary. Bw2—18to 33 inches (46 to 84 cm); yellowish brown (10YR 5/4) and pale brown (10YR 6/3) silty clay loam; common faint light brownish gray (10YR 6/2) mottles; moderate medium subangular blocky structure; friable; few fine roots; mildly alkaline; gradual smooth boundary.

C—33 to 49 inches (84 to 124 cm); yellowish brown (10YR 5/6) and pale brown (10YR 6/3) silty clay loam; many medium light brownish gray (10YR 6/2) and gray (10YR 6/1) mottles; massive; firm; mildly alkaline.

SOIL TYPE.		LINDSIDE (TAXADJUNCT) PEDON #							S9	3KY-239-0	17-(1-4)								
LOCATION	••••••		OFORD COL	JNTY, KENT	UCKY	GENERA	L METHOD	S		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2 <i>A</i>	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	nts
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-10	A	15.6	58.0	26.4	4.2	3.7	2.6	2.4	2.7							sil/sicl		,	
10-18	Bw ₁	19.4	41.2	39.4	8.4	4.0	2.4	2.3	2.3							sicl/sic/c		,	
18-33	Bw ₂	17.2	37.8	45.0	2.6	2.1	2.1	4.8	5.6							c/sic		,	
33-49	C	16.7	43.1	40.2	2.6	2.7	2.5	4.8	4.1						sic/sicl		,		
		рН			E	xchangeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z									. !	
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic	. !	P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	, K	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-10	6.13		6.62														3.93	245	100+
10-18	6.40		6.64														0.86	150	100+
18-33	6.15		6.65														0.56	74.5	100+
33-49	6.32		6.74														3.08	74.5	100+
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt			-						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Loradale, silt loam

Pedon #: S93KY-239-01-(1-3)

Classification: Fine, mixed, active, mesic Typic Argiudolls

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Limestone material

Vegetation: White clover, orchard grass, bluegrass, pasture

Landscape Position: Ridge top Drainage:

Moisture when sampled: Moist

Sampling Date: 6/14/93

Permeability:

Slope: 4%

Described by: S. Jacobs

A—0 to 15 inches (0 to 38 cm); dark brown (10YR 3/3) silt loam; moderate medium subangular structure parting to moderate fine granular; very friable; common fine roots; moderately alkaline; gradual smooth boundary.

Bt—15 to 34 inches (38 to 86 cm); yellowish brown (10YR 5/6) silty clay; moderate medium subangular and angular

blocky structure; firm; few fine roots; common fine clay films on ped faces; mildly alkaline; clear smooth boundary.

BC—34to43 inches (86 to 109 cm); yellowish brown (10YR 5/6) clay; many fine and medium light yellowish brown (10YR 6/4) mottles; weak coarse angular blocky structure; very firm; few fine roots; many fine clay films on ped faces; moderately alkaline; clear way boundary.

R-43 inches (109 cm); hard limestone bedrock.

SOIL TYPE. LOCATION	IL TYPELORADALE CATIONWOODFORD COUNTY, KENTUCKY					PEDON # GENERA	# L METHOD	s	S	93KY-239 1A1 1A2 1	-01-(1-3) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-15	A	8.7	77.0	14.3	0.4	1.7	2.1	2.1	2.4							sil			
15-34	Bt	5.6	58.2	36.2	0.4	1.6	1.5	1.1	1.0							sicl			
34-43	BC	13.0	39.8	47.2	1.2	2.5	2.9	3.7	2.7							sic/c			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-15	6.52		6.83														3.69	63	26
15-34	6.84		6.91														0.97	65.5	100
34-43	5.99		6.45														1.00	90.5	99.5
					•	M	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns		•			•	
Horizon				Sand	+ Silt			-						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
							1	1									1		
Minerals: SM	= smectite:	/ = vermiculi	te: HIV = hva	Iroxvinterlav	ered vermicu	lite: CL = chl	orite: INT = ir	nterstratified:	K= kaolinite:	MI = mica:	O = auartz: G	O = aoethite	: GI = aibbsi	te: F = feldspo	ars: CA = calc	ite: RE = othe	er resistant m	inerals	

Lowell, silt loam

Pedon #: S93KY-239-05-(1-4)

Classification: Fine, mixed, active, mesic Typic Hapludalfs

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Limestone residuum Vegetation: Fescue, orchard grass, bluegrass hay field Landscape Position: Side slope Drainage: Moisture when sampled: Moist Sampling Date: 7/13/93 Permeability: Slope: 8%

Described by: S. Jacobs

A—0 to 9 inches (0 to 23 cm); dark brown (10YR 4/3) silt loam; weak fine granular structure; very friable; gradual smooth boundary.

Bt1—9 to 27 inches (23 to 69 cm); dark yellowish brown (10YR4/6) silty clay loam; weak medium subangular blocky structure; friable; few faint clay films on ped faces; gradual smooth boundary. Bt2—27 to 35 inches (69 to 89 cm); yellowish brown (10YR 5/6) silty clay; moderate medium subangular blocky structure; firm; common distinct clay films on ped faces; clear smooth boundary.

BC—35 to 57 inches (89 to 145 cm); yellowish brown (10YR 5/6) clay; weak medium angular blocky structure; very firm; abrupt smooth boundary.

R—57 inches (145 cm); hard limestone bedrock.

SOIL TYPE.				LC	WELL	PEDON #	#		S9	93KY-239-0	005-(1-4)								
LOCATION	••••••	WOOI	DFORD CO	UNTY, KENT	UCKY	GENERA	L METHOD	s	••••••	1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3.	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	irse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-9	A	13.1	67.2	19.7	1.0	4.1	3.8	2.6	1.6							sil		ļ	
9-27	Bt ₁	12.1	52.5	35.4	1.1	4.2	3.2	2.2	1.4							sicl		ļ	
27-35	Bt ₂	14.0	35.8	50.2	2.0	3.9	3.2	2.9	2.0							с		ļ	
35-57	BC	17.5	27.1	55.4	2.0	3.2	4.3	4.8	3.2							с		ļ	
		рН			E:	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z									1	1
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	sc			Organic	l	P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	К	No.1
in	H ₂ O	КСІ	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-9	6.06		6.61			ļ					ļ						4.99	212	31.5
9-27	5.61		6.36			ļ											1.05	101	76
27-35	5.37		5.98			ļ											0.79	108	89.5
35-57	5.25		5.31														0.67	114	100+
						M	ineralogica	l Analysis—	-Estimated F	Percentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					-
ļ	Q	F	MI	К	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
																1		L	1

Lowell, silt loam

Pedon #: S99KY-011-05-(1-5)

Classification: Fine, mixed, active, mesic Typic Hapludalfs

Location: Bath County, Kentucky; Owingsville NW Quarter Quad., update sheet 7B; about 0.7 mile W of Reynoldsville in Bath Co., about 840 feet S. of Kentucky Highway 36; and about 200 feet W of farm road on a ridge top.

Parent Material: Residuum of the Tate Member limestone of the Upper Grant Lake formation

Vegetation: Alfalfa and a minor component of orchard grass

Landscape Position: Ridge top

Drainage:

Moisture when sampled: moist

Sampling Date: 02/26/99

Permeability:

Slope: 4%

Described by: D. Hines

Ap—0 to 8 inches (0 to 20 cm); brown (10YR 4/3) silt loam; moderate medium granular structure; friable; common fine roots; 1 percent limestone channers; slightly alkaline; gradual smooth boundary. Bt1—8 to 18 inches (20 to 46 cm); yellowish brown (10YR 5/4) silty clay loam; many medium faint yellowish brown (10YR 5/6) lithochromic mottles; moderate medium angular blocky structure; friable; few fine roots; few fine black nodules; common distinct clay films on faces of peds; slightly alkaline; clear smooth boundary.

Bt2—18 to 25 inches (46 to 64 cm); yellowish brown (10YR5/4) and (10YR5/6) silty clay; weak medium angular blocky structure; friable; many medium black stains and soft nodules; common distinct clay films on faces of peds; neutral; clear smooth boundary.

Bt3—25 to 44 inches (64 to 112 cm); yellowish brown (10YR 5/6) and light yellowish brown (2.5Y 6/3) silty clay; weak

medium angular blocky structure; firm; many medium black stains; many distinct clay films on faces of peds; moderately alkaline; abrupt smooth boundary.

C—44 to 57 inches (112 to 145 cm); dark yellowish brown (10YR 4/4) and light yellowish olive (2.5Y 6/3) silty clay; weak massive; firm; 30 percent rounded limestone gravels and channers; moderately alkaline; abrupt smooth boundary.

 $R{-}57$ to 61 inches (145 to 164 cm); hard limestone of the Tate Member.

SOIL TYPE	LOWELL	PEDON #
LOCATION	BATH COUNTY, KENTUCKY	GENERAL METHODS1A1 1A2 1B1B 2A1
		Particle Size Class and Particle Diameter (mm)

									Particle Size	e Class and	Particle Dia	ameter (mm)						
								3	A1								2/	A2	3B1a
			Total				Sand			9	Silt			Sand	VFS Plus	1	Coi	arse Fragm	ents
			Silt	Int. IV	Very		1		Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-20	Ар	7.3	69.9	22.8	0.5	1.2	1.6	2.2	1.8							sil	1	1	1
20-46	Bt,	6.3	63.2	30.5	0.3	1.6	1.7	1.5	1.2							sicl	1	1	1
46-64	Bt	8.1	51.7	40.2	0.6	2.1	1.8	1.9	1.7							sicl/sic	1	1	1
64-112	Bt,	4.9	38.2	56.9	0.1	0.3	0.7	1.4	2.4							sic/c	1	1	1
112-145	C	16.1	44.6	39.3	4.4	4.5	2.8	2.3	2.1							sicl/sic	1	1	1
	1	pH			E	xchangeab	le Bases (5A	1)		Base Sa	aturation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z								1	1	1
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	sc			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meg/	meg/	meq/	meg/	meq/	5C1	5C3	meg/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	1 -																1		
	·			•		M	ineralogica	l Analysis—	-Estimated F	Percentage	s in Various	Size Fractio	ns			•			
Horizon				Sand	l + Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
	1	Î	İ		1	1	1	1			1	1	İ	1	1	1	1	1	1

Lowell, silt loam

Pedon #: S99KY-011-09-(1-6)

Classification: Fine, mixed, active, mesic Typic Hapludalfs

Location: Bath County, Kentucky; Owingsville NE Quarter Quad., update sheet 7B; about 0.4 miles NW of Reynoldsville in Bath Co., about 800 feet N. of Kentucky Highway 36 on a ridge top.

Parent Material: Residuum of layered limestone of the upper Grant Lake formation

Vegetation: Fescue, broomsedge, bluegrass, orchardgrass

Landscape Position: Ridge top

Drainage:

Moisture when sampled: moist

Sampling Date: 03/17/99

Permeability:

Slope: 6%

Described by: D. Hines

A—0 to 7 inches (0 to 18 cm); brown (10YR 4/3) silt loam; moderate medium granular structure; friable; many fine roots; moderately acid; clear smooth boundary.

Bt1—7 to 15 inches (18 to 38 cm); dark yellowish brown (10YR 4/4) silty clay; common medium faint yellowish

brown (10YR 5/6) lithochromic mottles; moderate medium subangular blocky structure; firm; few fine roots; common distinct clay films on faces of peds; moderately acid; clear smooth boundary.

Bt2—15 to 24 inches (38 to 61 cm); dark yellowish brown (10YR5/6) silty clay; moderate medium subangular blocky structure; firm; few fine roots; common distinct clay films on faces of peds; very strongly acid; clear smooth boundary.

Bt3—24 to 30 inches (61 to 76 cm); light olive brown (2.5Y 5.4) silty clay; common medium distinct dark yellowish brown (10YR5/6) lithochromic mottles; common medium black masses; weak medium subangular blocky structure;

firm; few fine roots; common distinct films on faces of peds; very strongly acid; clear smooth boundary.

BC—30 to 36 inches (76 to 91 cm); light olive brown (2.5Y 5/4) silty clay; weak medium subangular blocky structure; firm; few fine roots; few fine black masses; neutral; clear smooth boundary.

C—36 to 41 inches (91 to 104 cm); light olive brown (2.5Y 5/3) silty clay; few fine distinct dark yellowish brown (10YR 5/6) lithochromic mottles; massive; firm; few fine roots; 30 percent limestone channers; moderately alkaline; abrupt smooth boundary.

R—41 to 45 inches (104 to 117 cm); hard limestone of the upper Grant Lake formation.

SOIL TYPELOWEL	L PEDON	#	S99-KY-011-09-(1-6)
LOCATION BATH COUNTY, KENTUCK	r genera	L METHODS	1A1 1A2 1B1B 2A1

									Particle Size	Class and	Particle Dia	meter (mm							
								3	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Co	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-7	A	13.6	69.2	17.2	0.6	2.7	3.5	4.2	2.6		1					sil			
7-15	Bt,	4.6	58.6	36.8	0.1	0.6	1.0	1.6	1.3		1				İ	sicl			
15-24	Bt	3.7	40.9	55.4	0.2	0.5	0.7	1.3	1.0		1				İ	sic			
24-30	Bt,	4.3	37.2	58.5	0.1	0.4	0.9	1.4	1.5		1				İ	c/sic			
30-36	BC	3.5	44.5	52.0	0.2	0.3	0.5	1.2	1.3		1				İ	sic			
36-41	С	21.3	47.0	31.7	2.1	4.6	5.3	4.7	4.6		1	1			1	cl	1		
		рН	,		E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z		1				1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meg/	meg/	meq/	meq/	meg/	meg/	5C1	5C3	meq/	meq/	meg/	Fe ₂ O ₂	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	<u>í</u>										1				İ	-			
						M	lineralogica	Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
	1		1	1		1	Î	1	1		1	1		1	İ	1	1	1	

Maury, silt loam

Pedon #: S93KY-239-09-(1-6)

Classification: Fine, mixed, semiactive, mesic Typic Paleudalfs

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Limestone residuum

Vegetation: Fescue, white clover grass strip

Landscape Position: Ridge top	
Drainage:	

Dramager

Moisture when sampled: Moist

Sampling Date: 7/20/93

Permeability:

Slope: 3.5%

Described by: R. Jones

A—0 to 13 inches (0 to 33 cm); dark brown (10YR 4/3) silt loam; weak fine granular structure; very friable; many fine roots; 1 percent chert fragments; slightly acid; gradual smooth boundary. Bt1—13 to 25 inches (33 to 64 cm); dark yellowish brown (10YR4/4) silty clay loam; weak medium subangular blocky structure; friable; few fine roots; common faint clay films on ped faces; neutral; gradual smooth boundary.

Bt2—25 to 40 inches (64 to 102 cm); dark brown (7.5YR4/4) silty clay loam; moderate medium subangular structure; firm; few fine roots; many faint clay films on ped faces; slightly acid; gradual smooth boundary.

Bt3—40 to 54 inches (102 to 137 cm); dark brown (7.5YR 4/4) silty clay; moderate medium subangular structure; firm; many distinct clay films on ped faces; 2 percent chert fragments; medium acid; gradual smooth boundary. Bt4—54 to 74 inches (137 to 188 cm); dark brown (7.5YR 4/4) clay; moderate medium angular and subangular blocky structure; very firm; many distinct clay films on ped faces; strongly acid; clear smooth boundary.

BC—74 to 100 inches; (188 to 254 cm); strong brown (7.5YR 4/6) and dark brown (7.5YR 3/2) clay; common medium and coarse prominent yellow (2.5Y 7/6) mottles; weak medium subangular blocky structure; very firm; few faint clay films on ped faces; 3 percent chert fragments; strongly acid.

SOIL TYPE	.MAURY	PEDON #	.S93KY-239-0 9-(1-6)
LOCATIONWOODFORD COUNTY, KE	NTUCKY	GENERAL METHODS	1A1 1A2 1B1B 2A1

									Particle Size	Class and	Particle Dia	meter (mm))						
								3	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-13	A	9.0	72.6	18.4	0.4	3.4	2.6	1.5	1.1							sil			
13-25	Bt ₁	6.9	61.9	31.2	0.7	2.7	1.6	1.0	0.9							sicl			
25-40	Bt ₂	8.8	52.6	38.6	1.1	3.4	2.0	1.2	1.1							sicl			
40-54	Bt ₃	13.9	38.7	47.4	1.3	4.2	3.0	3.0	2.4							sic/c			
54-74	Bt ₄	14.1	23.1	62.8	0.6	1.6	2.3	5.2	4.4							с			
74-100	BC	26.6	23.6	49.8	1.9	3.7	6.6	8.9	5.5							с			
		pH Exchangeable Bases (5A1) Base Saturation 6G1x 6H1a 5A3a														6N7	6A1a	60sz	6S6
		6N2z 602z 602z 6P2z 5B1a 5A1z]					
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-13	6.69		6.81														4.03	209.5	100+
13-25	6.63		6.72														1.27	78	100+
25-40	6.30		6.46														0.85	74	100+
40-54	5.91		6.18														0.61	89.5	100+
54-74	5.46		5.91														0.70	111.5	100+
74-100	5.45		6.03														0.28	89	100+
	•	-				М	ineralogica	Analysis—	Estimated P	Percentage	s in Various	Size Fractio	ns	·		•	*		
Horizon				Sand	+ Silt			-						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Maury, silt loam

Pedon #: S93KY-239-011-(1-4)

Classification: Fine, mixed, active, mesic Typic Paleudalfs

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Limestone residuum

Vegetation: Fescue, white clover, pasture field

Landscape Position: Ridge top Drainage: Moisture when sampled: Moist Sampling Date: 10/4/93 Permeability: Slope: 3% Described by: S. Jacobs Ap—0 to 12 inches (0 to 30 cm); dark brown (10YR 4/3) silt loam; weak medium subangular blocky structure parting to weak fine granular; friable; many fine and few medium roots; few fine manganese concretions; 1 percent chert fragments; medium acid; clear smooth boundary.

Bt1—12 to 33 inches (30 to 84 cm); brown (10YR 4/4) silty clay loam; moderate medium subangular blocky structure; firm; common fine roots; common distinct clay films on ped faces; many fine manganese concretions; 1 percent chert fraqments; neutral; gradual smooth boundary.

Bt2—33 to 50 inches (84 to 127 cm); strong brown (7.5YR 4/6) silty clay; moderate medium subangular blocky structure; very firm; few fine roots; many distinct clay films on ped faces; 3 percent chert fragments; neutral; clear smooth boundary.

Bt3—50 to 80 inches (127 to 203 cm); strong brown (7.5YR 5/6) and reddish yellow (7.5YR 6/8) clay; relict platy parting to strong medium angular blocky structure; very firm; many prominent clay films on ped faces; 10 percent chert fragments; neutral.

SOIL TYPE MAURY PEDON # S93KY-239-011-(1-4) LOCATION WOODFORD COUNTY, KENTUCKY GENERAL METHODS 1A1 1A2 1B1B 2A1

	1								Particle Size	Class and	Particle Dia	ameter (mm							
								3	A1								2	A2	3B1a
			Total				Sand			S	ilt	1		Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-12	Ар	8.6	72.1	19.3	1.5	2.9	2.1	1.1	1.0			1				sil			
12-33	Bt ₁	8.5	54.4	37.1	1.6	3.0	1.9	1.1	0.9							sicl			
33-50	Bt,	9.8	44.4	45.8	2.9	3.2	1.7	1.0	1.0							sic			
50-80	Bt,	8.4	40.4	51.2	1.2	2.6	1.8	1.3	1.5							sic/c			
		pH Exchangeable Bases (5A1) Base Saturation 6G1x 6H1a 5A3a														6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-12	5.24		6.37														3.88	250+	100+
12-33	6.32		6.68														0.84	250+	100+
33-50	6.17		6.56														0.64	163	100+
50-80	6.06		6.48														0.12	182	100+
	<u>.</u>					M	ineralogica	l Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns		·				
Horizon	1			Sand	+ Silt			-						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
	1				1	1	Î		1		1	Î		1	1	1	1		

Maury, silt loam (Taxadjunct)

Pedon #: S93KY-239-12-(1-5) Classification: Fine, mixed, mesic Typic Hapludalfs Location: Woodford Co., KY; University of Kentucky farm. Parent Material: Limestone residuum

MANURY (TAYAR UNICT)

Vegetation: Fescue, clover hayfield

COULTVDE

Landscape Position: Side slope Drainage: Moisture when sampled: Moist Sampling Date: 10/4/93 Permeability: Slope: 6% Described by:

DEDON #

Ap—0to 15 inches (0 to 38 cm); darkyellowish brown (10YR 4/4) loam; weak fine granular structure; friable; common fine roots; neutral; clear smooth boundary.

Bt1—15 to 23 inches (38 to 58 cm); strong brown (7.5YR 4/6) silt loam; weak medium subangular blocky structure; friable; few fine roots; few faint clay films on ped faces; common iron and manganese concretions; neutral; clear smooth boundary.

Bt2—23 to 45 inches (58 to 114 cm); strong brown (7.5YR 4/6) silty clay loam; moderate medium subangular blocky structure; firm; common distinct clay films on ped faces; common iron and manganese concretions; medium acid; gradual smooth boundary.

Bt3—45 to 53 inches (114 to 135 cm); strong brown (7.5YR 4/6) clay; moderate medium subangular blocky structure; veryfirm; common distinct clay films on ped faces; common iron and manganese concretions; medium acid; gradual smooth boundary.

C—53 to 72 inches (135 to 183 cm); dark brown (7.5YR 4/3) clay; massive; very firm; 5 percent chert fragments; medium acid.

LOCATION	•••••••	WOOI	DFORD CO	UNTY, KENT	UCKY	GENERA	L METHOD	S		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							-
								3	A1								2/	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very		1		Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-15	Ар	8.9	71.7	19.4	1.2	2.9	2.4	1.3	1.1							sil			
15-23	Bt ₁	6.1	63.6	30.3	0.9	1.9	1.6	0.9	0.8							sicl			
23-45	Bt,	11.3	50.7	38.0	2.2	3.1	2.6	1.8	1.6							sicl			
45-53	Bt,	12.6	33.4	54.0	1.3	1.8	2.7	3.9	2.9							с			
53-72	C	26.0	26.8	47.2	2.9	3.8	6.9	8.1	4.3							с			
		pН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	K	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-15	5.97		6.61														3.38	250+	100+
15-23	6.14		6.58														0.83	250+	100+
23-45	6.13		6.43														0.53	124	100+
45-53	5.49		6.00														0.40	138	100+
53-72	5.43		6.02														0.15	112	100+
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

CODIVI 220 042 (4 5)

Maury, silt loam (Taxadjunct)

Pedon #: S93KY-239-13-(1-7)

Classification: Fine-silty, mixed, active, mesic Typic Paleudalfs

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Limestone residuum

Vegetation: Tobacco

Landscape Position: Ridge top

Drainage:

Moisture when sampled: Moist

Sampling Date: 10/5/93

Permeability:

Slope: 2 to 6 percent

Described by:

Ap—0 to 9 inches (0 to 23 cm); dark yellowish brown (10YR 4/4) silt loam; weak fine granular structure; friable; many fine roots; 1 percent fine manganese concretions; medium acid; gradual smooth boundary. BA—9 to 21 inches (23 to 53 cm); dark yellowish brown (10YR 4/4) silt loam; weak medium subangular blocky structure parting to weak fine granular; friable; few very fine roots; 5 percent fine manganese concretions; slightly acid; gradual smooth boundary.

Bt1—21 to 33 inches (53 to 84 cm); dark brown (7.5YR4/4) silty clay loam; weak medium subangular blocky structure; firm; few very fine roots; few faint clay films on ped faces; 10 percent fine and medium manganese concretions; medium acid; clear smooth boundary.

Bt2—33 to 52 inches (84 to 132 cm); strong brown (7.5YR 4/6) silty clay loam; moderate medium subangular blocky structure; firm; few fine roots; many faint clay films on ped faces; 15 percent fine and medium manganese concretions; medium acid; gradual smooth boundary. Bt3—52 to 64 inches (132 to 163 cm); yellowish red (5YR 4/6) silty clay loam; thin platy structure parting to moderate medium subangular blocky; firm; many faint clay films on ped faces; 15 percent fine manganese concretions; medium acid; gradual smooth boundary.

Bt4—64 to 74 inches (163 to 188 cm); yellowish red (5YR 4/6) silty clay; strong medium subangular blocky structure; very firm; many distinct clay films on ped faces; 20 percent fine manganese concretions; strongly acid; gradual smooth boundary.

Bt5—74 to 98 inches (188 to 249 cm); yellowish red (5YR 4/6) clay; moderate medium subangular blocky structure; very firm; many distinct clay films on ped faces; 20 percent fine and medium manganese concretions; slightly acid.

SOIL TYPE......MAURY (TAXADJUNCT) LOCATIONWOODFORD COUNTY, KENTUCKY

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-9	Ар	6.5	75.7	17.8	0.8	1.7	1.6	1.3	1.1							sil			L
9-21	BA	5.5	68.0	26.5	1.4	1.9	1.1	0.5	0.6							sil/sicl			
21-33	Bt ₁	9.1	59.8	31.1	2.5	3.6	1.6	0.6	0.8							sicl			
33-52	Bt ₂	8.1	56.0	35.9	1.5	3.0	1.9	0.8	0.9							sicl			
52-64	Bt ₃	8.2	52.3	39.5	2.0	2.7	1.6	0.8	1.1							sicl/sic			
45-50	2Bt ₄	34.0	43.4	22.5	12.9	9.5	6.0	3.6	2.0							I			
50-73	3Bt _s	7.3	63.9	28.8	3.8	2.6	1.5	1.4	2.0							sicl			
		рН			E	xchangeab	e Bases (5A	.1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-9	5.52		6.55														2.77	208	100+
9-21	5.41		6.42														0.82	96	100+
21-33	4.91		5.91														0.56	77.5	74.5
33-52	4.85		5.78														0.36	80	65.5
52-64	4.90		5.89														0.33	94.5	86.5
64-74	5.01		5.98														0.28	91.5	100+
74-98	5.31		6.11														0.21	97.5	100+
						М	ineralogica	l Analysis—	Estimated F	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
																			(

Maury, silt loam (Taxadjunct)

Pedon #: S93KY-239-15-(1-6)

Classification: Fine-silty, mixed, mesic Typic Paleudalfs **Location:** Woodford Co., KY; University of Kentucky farm.

SOIL TYPE......MAURY (TAXADJUNCT)

Parent Material: Limestone residuum

Vegetation: Bluegrass, fescue pasture

Landscape Position: Ridge top

Drainage:

Moisture when sampled: Moist

Sampling Date: 10/6/93

Permeability: Slope: 2%

. Described by:

A1-0 to 12 inches (0 to 30 cm); dark brown (10YR 4/3)

concretions; neutral; clear smooth boundary.

silt loam; weak fine granular structure; common fine black concretions; mildly alkaline; gradual smooth boundary. A2—12 to 20 inches (30 to 51 cm); dark brown (10 YR4/3 and 7.5 YR4/3) silt loam; weak fine subangular blocky structure parting to weak fine granular; common fine manganese Bt1—20 to 38 inches (51 to 97 cm); dark brown (7.5YR 4/4) silty clay loam; weak medium subangular blocky structure; few faint clay films on ped faces; common fine manganese concretions; neutral; gradual smooth boundary.

Bt2—38 to 61 inches (97 to 155 cm); dark brown (7.5YR 4/4) silty clay; moderate medium subangular blocky structure; common faint clay films on ped faces; common fine manganese concretions; neutral; gradual smooth boundary.

Bt3—61 to 84 inches (155 to 213 cm); dark brown (7.5YR 4/4) clay; common medium distinct yellowish brown (10YR 5/6) mottles; moderate medium angular and subangular blocky structure; common distinct clay films on ped faces; many fine and medium manganese concretions; slightly acid; clear smooth boundary.

BC—84 to 113 inches; (213 to 287 cm); dark brown (7.5YR 4/4 and 7.5YR 4/6) clay; many medium distinct yellowish brown (10YR 5/6) mottles; weak medium angular blocky structure; many fine manganese concretions; slightly acid.

2A2

Coarse Fragments 2-19 1

Pct of

3B1a

19-76

Pct of

R-113 inches (287 cm); hard limestone bedrock.

LOCATION	••••••	WOOI	DFORD COU	JNTY, KENT	UCKY	GENERA	L METHOD	S	••••••	.1A1 1A2 1	B1B 2A1					
									Particle Size	e Class and	Particle Dia	meter (mm)			
								3/	A1							
			Total				Sand			S	ilt			Sand	VFS Plus	
			Silt	Int. IV	Very		1		Very		1]		Coarser	Silt	
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class
0-12	Α	6.8	79.5	13.7	0.9	1.6	1.5	1.4	14							sil

in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-12	A ₁	6.8	79.5	13.7	0.9	1.6	1.5	1.4	1.4							sil			
12-20	A ₂	5.9	73.3	20.8	1.0	1.7	1.4	0.9	0.9							sil			
20-38	Bt ₁	9.1	57.5	33.4	1.4	2.8	2.2	1.5	1.2							sicl			
38-61	Bt ₂	21.8	33.3	44.9	2.5	3.4	4.6	6.9	4.4							с			
61-84	Bt ₃	22.6	31.6	45.8	0.3	1.4	3.6	9.5	7.8							с			
84-113	BC	19.5	37.9	42.6	0.3	0.9	3.2	8.1	7.0							с			
		рН			E	kchangeabl	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H,0	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-12	6.38		6.74														4.30	250+	100+
			017 1																
12-20	6.30		6.69														2.10	218	100+
12-20 20-38	6.30 6.27		6.69 6.56														2.10 0.82	218 156	100+ 100+
12-20 20-38 38-61	6.30 6.27 6.05		6.69 6.56 6.40														2.10 0.82 0.43	218 156 162	100+ 100+ 100+
12-20 20-38 38-61 61-84	6.30 6.27 6.05 6.06		6.69 6.56 6.40 6.37														2.10 0.82 0.43 0.44	218 156 162 180	100+ 100+ 100+ 100+
12-20 20-38 38-61 61-84 84-113	6.30 6.27 6.05 6.06 5.97		6.69 6.56 6.40 6.37 6.51														2.10 0.82 0.43 0.44 0.45	218 156 162 180 145	100+ 100+ 100+ 100+ 100+
12-20 20-38 38-61 61-84 84-113	6.30 6.27 6.05 6.06 5.97		6.69 6.56 6.40 6.37 6.51			M	ineralogica	Analysis—	Estimated P	Percentage	in Various	Size Fractio	ns				2.10 0.82 0.43 0.44 0.45	218 156 162 180 145	100+ 100+ 100+ 100+ 100+
12-20 20-38 38-61 61-84 84-113 Horizon	6.30 6.27 6.05 6.06 5.97		6.69 6.56 6.40 6.37 6.51	Sand	+ Silt	Mi	ineralogica	Analysis—	Estimated P	Percentages	in Various	Size Fractio	ns	Clay			2.10 0.82 0.43 0.44 0.45	218 156 162 180 145	100+ 100+ 100+ 100+ 100+
12-20 20-38 38-61 61-84 84-113 Horizon	6.30 6.27 6.05 6.06 5.97	F	6.69 6.56 6.40 6.37 6.51	Sand K	+ Silt	M i	ineralogical	Analysis— CA	Estimated P SM	Percentage: V	i n Various HIV	Size Fractio	ns INT	Clay K	MI	Q	2.10 0.82 0.43 0.44 0.45	218 156 162 180 145 GO	100+ 100+ 100+ 100+ 100+ F

McAfee, silt loam (Taxadjunct)

Pedon #: S93KY-239-10-(1-3)

Classification: Fine-silty, mixed, mesic Mollic Hapludalfs

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Limestone residuum

Vegetation: Fescue, white clover hay field Landscape Position: Sideslope Drainage: Moisture when sampled: Moist Sampling Date: 7/21/93

Permeability: Slope: 12% **Described by:** R. Jones

A—0 to 13 inches (0 to 33 cm); dark brown (7.5YR 3/3) silt loam; weak medium subangular blocky structure parting to weak fine granular; friable; many fine roots; neutral; clear smooth boundary.

Bt1—13 to 19 inches (33 to 48 cm); dark reddish brown (5YR 3/4) silty clay loam; weak medium subangular blocky

structure; firm; common fine roots; few faint clay films on ped faces; neutral; gradual smooth boundary.

Bt2—19 to 28 inches (48 to 71 cm); reddish brown (5YR4/4) silty clay loam; moderate medium subangular structure; firm; few fine roots; common distinct clay films on ped faces; 1 percent chert fragments; slightly acid; abrupt smooth boundary.

R—28 inches (71 cm); hard limestone bedrock.

OIL TYPE.			MCAFE DFORD COL	E (TAXADJU JNTY, KENT	UNCT) UCKY	PEDON # GENERA	# L METHOD:	S	S9	3KY-239-0 1A1 1A2 1)10-(1-3) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-13	A	14.6	70.7	14.7	2.8	4.6	3.6	2.2	1.4							sil			
13-19	Bt,	13.0	60.0	27.0	1.8	4.7	3.3	1.8	1.4							sil/sicl			
19-28	Bt ₂	15.8	52.0	32.2	2.2	5.5	3.8	2.4	1.9							sicl			
	pH Exchangeable Bases (5A1)								Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656	
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-13	6.35		6.62														4.63	190	100+
13-19	6.63		6.67		1												1.49	189	100+
19-28	6.33		6.54	1	1												1.01	145	100+
					•	м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon	Sand + Silt												Clay						
	Q	F	MI	К	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
				1		Ì	1				1			1	1		1	1	

Melvin, silt loam (Taxadjunct)

Pedon #: S90KY-135-28-(1-4)

Classification: Fine-silty, mixed, nonacid, mesic Typic Fluvaquents

Location: Lewis County, Kentucky; Atlas sheet 30B; about 1.2 miles southeast of the junction of KY-989 and Buck Lick Branch Road at Burtonville, about 350 feet south of Buck Lick Branch Road, and about 400 feet north of Buck Lick Branch. x: 2,197,200 feet; Latitude: 38° 28' 58"; y: 358,560 feet; Longitude: 83° 33' 35" **Parent Material:** Mixed alluvium of the Quaternary Geologic System

Vegetation: Chinkapin oak, pin oak, silver maple woodland

Landscape Position: Floodplain

Drainage:

Moisture when sampled: Moist

Sampling Date: 11/2/90

Permeability:

Slope: 2%

Described by: S. Jacobs and D. Dotson

Ag—0 to 7 inches (0 to 18 cm); light brownish gray (2.5Y 6/2) and gray (5GY 6/1) silt loam; many fine and medium prominent yellowish red (5YR 5/6) mottles; weak fine granular structure; friable; many fine roots, one coarse root; very strongly acid; gradual smooth boundary.

Cg1—7 to 21 inches (18 to 53 cm); gray (5GY 6/1) silt loam; many medium and coarse and common fine prominent reddish brown (7.5YR 6/8) mottles; massive; friable; common fine roots; strongly acid; diffuse smooth boundary. Cg2—21 to 40 inches (53 to 102 cm); gray (10YR 6/1) and (5GY 6/1) silt loam; many medium and coarse faint brownish yellow (10YR 6/8) mottles; structureless; friable; common fine roots, one medium root; many fine black concretions and Fe stains; strongly acid; diffuse smooth boundary.

Cg3—40 to 70 inches (102 to 178 cm); gray (10YR 6/1) silt loam; common medium faint brownish yellow (10YR 6/8) mottles; structureless; friable; few fine roots; slightly acid.

									Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2/	42	3B1a
			Total		1		Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
Depth in	Horizon	Sand (2-0.05)	Silt (0.05- 0.002)	Int. IV Clay <0.002	Very Coarse (2-1)	Coarse (1-0.5)	Medium (0.5-0.25)	Fine (0.2501)	Very Fine (0.1-0.05)	(0.05- 0.02)	Int. III (.02002)	Int. II (0.2-0.02)	Int. l (2-0.2)	Coarser Than VF (2-0.1)	Silt (0.1- 0.002)	Textural Class	>2 Pct	2-19 Pct of <76mm	19-70 Pct o <76m
0-7	Ag	22.9	58.9	18.2	2.0	4.0	2.9	2.9	11.1							sil			
7-21	Cg,	19.4	59.4	21.2	0.4	1.2	2.2	2.8	12.8							sil			
21-40	Cg,	19.9	56.2	23.9	0.9	2.3	2.0	2.3	12.4							sil			
40-70	Cg,	22.5	53.3	24.2	1.5	2.4	2.6	2.3	13.7							sil			
		pH			E	changeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
Depth in	8C1a (1:1) H ₂ O	8C1c (1:1) KCl	8D7 SMP Buff.	6N2z Ca meq/ 100gm	602z Mg meq/ 100gm	602z K meq/ 100gm	6P2z Na meq/ 100gm	5B1a TEB meq/ 100gm	5A1z CEC meq/ 100gm	5C1 Pct	5C3 Pct	H+Al meq/ 100 gm	EA meq/ 100gm	SC meq/ 100gm	Fe ₂ O ₃ Pct	CaCO ₃ Eq. Pct	Organic Matter Pct	K ppm	P Bra No.1 ppm
						M	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Memphis, silt loam

Pedon #: S03-KY-007-02

 $\label{eq:classification: Fine-silty, mixed, active, thermic Typic Hapludalfs$

Location: Ballard County, KY; 2.3 miles southeast of Barlow, 1.4 miles east of the JCT of US 60 and KY 1368 on south side of KY 1368; Barlow 7.5' USGS Quad. Latitude: 37° 02' 11"N; Longitude: 89° 03' 13" W

Parent Material: Loess, > 4 Ft.

Vegetation: Fescus and Johnsongrass, CRP

Aspect:

Landscape Position: Upland ridgetop

Drainage: Well drained

Moisture when sampled: Dry 0 to 14 inches; moist 14 to 80 inches.

Sampling Date: 8/12/03 & 8/29/03

Permeability: Moderate

Slope: 2-3 %

Described by: J. E. McIntosh

Ap—0 to 7 inches; brown (10YR 4/3) silt loam; moderate medium granular structure; very friable; many fine roots; slightly acid (pH 6.2); clear smooth boundary.

Bt1—7 to 14 inches; strong brown (7.5YR 4/6) silt loam; moderate medium subangular blocky structure; friable; common fine roots; few distinct dark brown (7.5YR 4/3) clay skins in pores and on faces of peds; neutral (pH 6.7); clear smooth boundary. Bt2—14 to 30 inches; strong brown (7.5YR 4/6) silt loam; moderate medium subangular blocky structure; firm; common fine roots; many distinct dark brown (7.5YR 4/3) clay skins in pores and on faces of peds; 1% prominent light yellowish brown (2.5YR6/3) clay depletions (10YR 7/1 dry) on faces of peds; 1% prominent black (N2.5/0) manganese or iron-manganese oxide stains on faces of peds; slightly acid (pH 6.4); clear smooth boundary.

Bt3—30 to 52 inches; brown (7.5YR 4/4) silt loam; moderate medium subangular blocky structure; firm; few fine roots; many distinct dark brown (7.5YR 4/3) clay skins in pores and on faces of peds; 1% prominent light yellowish brown (2.5Y 6/3) clay depletions (10YR 7/1 dry) on faces of peds; 1% prominent black (N 2.5/0) manganese or ironmanganese oxide stains on faces of peds; moderately acid (oH 5.8): clear smooth boundarv. Bt4—52 to 72 inches; brown (7.5YR4/4) silt loam; moderate medium subangular blocky structure; firm; few fine roots; common distinct dark brown (7.5YR4/3) clay skins in pores and on faces of peds; 5 to 7% prominent light yellowish brown (2.5Y 6/3) clay depletions (10YR 7/1 dry) on faces of peds; 1% prominent black (N 2.5/0) manganese or ironmanganese oxide stains on faces of peds; moderately acid (DH 5.6); clear smooth boundary.

BC—72 to 80 inches; brown (7.5YR 4/4) silt loam; weak medium subangular blocky structure; friable; very few fine roots; 2% prominent light yellowish brown (2.5Y 6/3) clay depletions (10YR 7/1 dry) on faces of peds; 1% prominent black (N2.5/0) manganese or iron-manganese oxide stains on faces of peds; moderately acid (pH 5.6).

SOIL TYPEMEMPHIS	PEDON # \$03KY-007-02
LOCATIONBALLARD COUNTY, KENTUCKY	GENERAL METHODS1A1 1A2 1B1B 2A1

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragmo	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
7-14	Bt ₁																		
14-30	Bt ₂																		
30-52	Bt,																		
52-72	Bt ₄																		
72-80	BC																		
		pН	pH Exchangeable Bases (5A1) Base Saturation 6G1x 6H1a 5A3a											6N7	6A1a	60sz	6S6		
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
7-14				6.98	1.43	0.19	0.03	8.63	10.84	80	60		5.77						
14-30				7.46	4.15	0.38	0.04	12.03	15.31	78	62		7.50						
30-52				5.27	4.00	0.27	0.06	9.60	13.31	72	52		9.03						
52-72				4.88	3.59	0.12	0.08	8.67	11.68	74	53		7.78						
72-80				4.70	3.14	0.09	0.06	7.99	10.06	79	53		7.09						
						м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	F MI K CL INT RE							V	HIV	CL	INT	К	MI	Q	GI	GO	F

Muse, o	channery	silt	loam
(Taxadj	junct)		

Pedon #: S94KY-135-16-(1-8)

Classification: Fine-loamy, mixed, semiactive, mesic Typic Hapludults

Location: Lewis County, Kentucky

Parent Material:

Vegetation:

Landscape Position:

Drainage:

Moisture when sampled:

Sampling Date:

Permeability: Slope:

Described by:

A—0 to 4 inches; dark grayish brown (10YR 4/2) channery silt loam; weak fine subangular blocky structure parting to weak fine granular; friable; many fine and medium roots, few coarse roots; 25% shale fragments; very strongly acid; gradual smooth boundary.

AB—4 to 8 inches; dark brown (10YR 4/3) channery silt loam; weak fine subangular blocky structure parting to weak fine granular; friable; common fine and medium roots; few coarse roots; 15% shale fragments; very strongly acid; clear smooth boundary.

Bt1—8 to 16 inches; yellowish brown (10YR 5/4)channery silt loam; weak fine and medium subangular blocky

structure; friable; few fine medium and coarse roots; 30% shale fragments; few faint clay films on peds and fragments; extremely acid; clear wavy boundary.

Bt2—16 to 22 inches; yellowish brown (10YR 5/4) channery silty clay loam; weak fine and medium subangular blocky structure; friable; few fine and medium roots; 15% shale fragments; common faint clay films on peds; extremely acid; clear wavy boundary.

BC—22 to 30 inches; dark yellowish brown (10YR 4/4) very channery silty clay loam; weak fine subangular blocky structure; friable; few fine and medium roots; 60% shale fragments; common faint clay films on fragments; extremely acid; abrupt wavy boundary.

2Bt3—30 to 45 inches; reddish brown (2.5Y 4/4) very channery clay; many fine prominent light yellowish brown (2.5Y 6/3) mottles; moderate medium and coarse subangular blocky structure; very firm; few fine and medium roots; 40% shale fragments; many distinct clay films on peds and fragments; extremely acid; abrupt wavy boundary.

2Bt4—45 to 50 inches; weak red (2.5YR 4/2) extremely channery clay; many fine distinct red (2.5YR 4/6) mottles; moderate medium subangular blocky structure; very firm; few fine roots; 70% shale fragments; many distinct clay films on peds and fragments; extremely acid; abrupt wavy boundary.

3Bt5—50 to 73 inches; weak red (2.5YR 4/2) and red (10R 4/6) very channery clay; many fine prominent light yellowish brown (2.5Y 6/3) mottles; weak medium subangular blocky structure; very firm; common fine and medium roots; 50% shale fragments; many distinct clay films on ped faces; extremely acid; abrupt smooth boundary.

3Cr—73 to 80 inches; soft shale bedrock.

SOIL TYPE	MUSE (TAXADJUNCT)
LOCATION	LEWIS COUNTY, KENTUCKY

PEDON #S94KY-135-016-(1-5) GENERAL METHODS1A1 1A2 1B1B 2A1

			Particle Size Class and Particle Diameter (mm)																
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-4	A	31.6	51.8	16.6	12.6	8.9	4.6	2.5	3.0							sil			
4-8	AB	25.3	50.9	23.8	8.2	7.2	5.0	2.6	2.3							sil			
8-16	Bt ₁	25.4	49.0	25.6	11.5	7.5	3.3	1.6	1.5							l/sil			
16-22	Bt ₂	20.7	49.0	30.3	10.0	6.1	2.4	1.1	1.1							sicl/cl			
22-30	BC	34.5	40.2	25.3	15.5	11.9	4.8	1.6	0.7							I			
30-45	2Bt ₃	17.7	51.1	31.2	5.7	5.1	3.0	1.9	2.0							sicl			
45-50	2Bt ₄	34.0	43.4	22.5	12.9	9.5	6.0	3.6	2.0							I			
50-73	3Bt ₅	7.3	63.9	28.8	3.8	2.6	1.5	1.4	2.0							sicl			
		рН			Ex	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogical	Analysis—	Estimated P	ercentage	in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt1	44	20	36							9			15	10	58	7			1
Bt2	75	10	15										17	10	63	9			1
BC	60		40										17	10	63	9			

Muse, channery silt loam	Landscape Position:	A—0 to 4 inches; dark yellowish brown (10YR 3/4) chan-
	Drainage:	nery silt loam; weak fine granular structure; friable; many
Pedon #: S94KY-135-38-(1-4)	Moisture when sampled:	fragments; slightly acid; clear smooth boundary.
Classification: Fine, illitic, semiactive, mesic Typic	Sampling Date:	Bt1—4 to 15 inches; yellowish brown (10YR 5/6) silty clay;
Hapluduits	Permeability:	moderate fine and medium subangular blocky structure;
Location: Lewis County, Kentucky	Slope:	firm; common fine and medium, few coarse roots; 3%
Parent Material:	Described by:	sandstone, 10% shale fragments; many faint and distinct
Vegetation:	Described by.	boundary.

Bt2—15 to 26 inches; yellowish brown (10YR 5/6) and brownish yellow (10YR 6/6) channery clay; common fine prominent light yellowish brown (2.5Y 6/3) mottles; moderate fine and medium subangular blocky structure; very firm; few fine and medium roots; 5% sandstone, 10% shale fragments; many distinct clay films on peds; very strongly acid; gradual wavy boundary.

Bt3—26 to 46 inches; brownish yellow (10YR 6/6) channery clay, moderate medium and coarse subangular blocky structure; very firm; few fine roots; 8% sandstone, 10% shale fragments; many faint clay films on peds; very strongly acid.

SOIL TYPE.	••••••		LEWIS COL	JNTY, KENT	MUSE UCKY	PEDON # GENERA	+ L METHOD	 S	S9	4KY-135-0 1A1 1A2 1)38-(1-4) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very		l l	1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-4	A	22.6	66.6	10.8	5.1	6.6	3.7	2.9	4.3							sil			
4-15	Bt,	6.0	56.9	37.1	1.4	1.7	1.0	0.7	1.2		1			1		sicl			
15-26	Bt _a	9.5	49.6	40.9	3.3	2.9	1.6	0.8	0.9		1			1		sic/sicl			
26-46	Bt ₂	9.2	52.2	38.6	3.2	2.1	1.2	0.9	1.8		1					sic/sicl			
	,,	pH			E	changeabl	e Bases (5A	1)	· · · · · · · · · · · · · · · · · · ·	Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
		· ·		6N2z	602z	602z	6P2z	5B1a	5A1z		1								
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	mea/	mea/	mea/	mea/	mea/	mea/	5C1	5C3	mea/	mea/	mea/	Fe ₂ O ₂	CaCO	Matter	к	No.1
in	H.O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
				-			-	-			1			-		•		•••	
				•		Mi	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt			•						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	К	MI	Q	GI	GO	F
Bt1									1 1	10		1	10	20	54	6			
Bt2											1		5	20	68	7			

Muse, silty clay loam (Taxadjunct)

Pedon #: S94KY-135-39-(1-6) Classification: Fine-silty, mixed, semiactive, mesic Typic Paleudults

Location: Lewis County, Kentucky

Parent Material:

Vegetation:

Landscape Position:

Drainage: Moisture when sampled: Sampling Date: Permeability:

Described by:

Slope:

Ap-0 to 7 inches; dark yellowish brown (10YR 4/4) silty clay loam; weak fine subangular blocky structure parting to weak fine granular; friable; common fine roots; moderately alkaline; clear smooth boundary.

B/A-7 to 10 inches; dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/6) silty clay loam; weak fine and medium subangular blocky structure; firm; common fine roots; few faint clay films on peds; moderately alkaline; clear smooth boundary.

Bt1—10 to 28 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; firm; few fine roots; few fine concretions; many distinct clay films on peds; very strongly acid; gradual smooth boundary.

Bt2-28 to 44 inches; yellowish brown (10YR 5/6) silty clay; common fine and medium prominent light yellowish brown (2.5Y 6/3) mottles; moderate medium subangular blocky structure; very firm; few iron concretions; many distinct clay films on peds; very strongly acid, clear smooth boundary.

Bt3—44 to 67 inches; light gray (10YR 7/2) and yellowish brown (10YR 5/6 and 10YR 5/8) silty clay; weak medium and coarse subangular blocky structure; very firm; few iron concretions; common distinct clay films on peds; very strongly acid; gradual smooth boundary.

C-67 to 71 inches; light gray (10YR 7/2) and brownish yellow (10YR 6/8) clay; few shale fragments and iron concretions; very strongly acid.

SOIL TYPE. LOCATION			MUS LEWIS COU	E (TAXADJU JNTY, KENT	UNCT) UCKY	PEDON # GENERA	‡ L METHOD	S	S9	4KY-135-0 1A1 1A2 1	039-(1-6) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2/	12	3B1a
			Total				Sand			S	Silt			Sand	VFS Plus]	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-7	Ар	15.1	59.9	25.0	2.2	3.0	2.6	2.7	4.6							sil			
7-10	B/A	10.0	57.6	32.4	2.6	1.6	1.2	1.3	3.3							sicl			
10-28	Bt,	5.9	62.2	31.9	1.1	0.8	0.7	0.6	2.7							sicl			
28-44	Bt	10.6	58.9	30.5	1.1	1.8	1.6	1.6	4.5					1		sicl			
44-67	Bt	7.2	61.7	31.1	1.3	1.0	0.9	0.9	3.1		1					sicl			
67-71	Ċ	12.2	45.6	42.2	3.5	2.5	2.0	1.6	2.6		1					sic			
		pH			E:	xchangeabl	e Bases (5A	1)	•	Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
Depth	8C1a (1:1)	8C1c (1:1)	8D7 SMP	Ca meq/	Mg meq/	K meq/	Na meq/	TEB meq/	CEC meq/	5C1	5C3	H+AI meq/	EA meq/	SC meq/	Fe ₂ O ₃	CaCO ₃	Organic Matter	к	P Bray No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						М	ineralogica	l Analysis—	Estimated P	ercentage	es in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt1	80	20								11			17	23	41	7			1
Bt2	91	4	5							18			16	22	35	8			1

Newark, silt loam

Pedon #: \$93KY-239-07-(1-8)

Classification: Fine silty, mixed, active, nonacid, mesic Fluvaquentic Endoaquepts

Location: Woodford Co., KY; University of Kentucky farm.

Parent Material: Alluvium

Vegetation: Fescue, white clover pasture

Landscape Position: Sinkhole bottom

Drainage:

Moisture when sampled: Moist

Sampling Date: 7/20/93

Permeability:

Slope: 1%

Described by: S. Jacobs

A1-0 to 11 inches (0 to 28 cm); dark brown (10YR 4/3) silt loam; weak fine granular structure; friable; common fine roots; neutral; gradual smooth boundary.

A2-11 to 16 inches (28 to 41 cm); dark yellowish brown (10YR 4/4) silt loam; weak medium subangular blocky structure parting to weak fine granular; friable; few fine roots; neutral; clear smooth boundary.

Bg1—16 to 21 inches (41 to 53 cm); light brownish gray (10YR 6/1) and yellowish brown (10YR 5/4) silt loam; moderate fine platy structure parting to moderate medium subangular blocky; friable; few very fine roots; neutral; clear smooth boundary.

Bw-21 to 32 inches (53 to 81 cm); light brownish gray (10YR 6/2) and yellowish brown (10YR 5/4 and 10YR 5/8) silty clay loam; moderate fine and medium subangular blocky structure; firm; neutral; clear smooth boundary.

Bg2—32 to 54 inches (81 to 137 cm); light brownish gray (10YR 6/2) and pale brown (10YR 6/3) silty clay loam; common fine and medium brownish yellow (10YR 6/8) mottles; weak medium platy structure parting to moderate medium subangular blocky; firm; slightly acid; gradual smooth boundary.

Bq3—54 to 66 inches (137 to 167 cm); light brownish gray (10YR 6/2) and pale brown (10YR 6/3) silty clay loam;

many fine and medium brownish yellow (10YR 6/8) and dark yellowish brown (10YR 4/6) mottles; weak medium subangular blocky structure; firm; strongly acid; gradual smooth boundary.

BC-66 to 71 inches (167 to 180 cm); yellowish brown (10YR 5/4) silty clay; many medium and coarse light brownish gray (10YR 6/2) and pale brown (10YR 6/3) mottles; weak fine platy structure parting to weak fine subangular blocky; friable; medium acid; gradual smooth boundary.

C-71 to 90 inches (180 to 229 cm); light brownish grav (10YR 6/2) clay; many medium and coarse brown (10YR 5/3) and brownish yellow (10YR6/6) mottles; massive; very firm; slightly acid; abrupt smooth boundary.

R—90 inches (229 cm); hard limestone bedrock

SOIL TYPENEWAR	PEDON #	
LOCATIONWOODFORD COUNTY, KENTUCKY	GENERAL METHOD	S1A1 1A2 1B1B 2A1

		Particle Size Class and Particle Diameter (mm)																	
								3	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very		1		Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-11	A ₁	6.5	73.1	20.4	0.7	1.2	1.4	1.2	2.0							sil			
11-16	A ₂	7.4	72.2	20.4	0.6	1.7	2.1	1.8	1.2							sil			
16-21	Bg ₁	5.4	63.9	30.7	0.3	1.3	1.4	1.2	1.2							sicl			
21-32	Bw	6.7	60.1	33.2	0.6	1.9	1.8	1.2	1.2							sicl			
32-54	Bg ₂	3.7	64.8	31.5	0.3	1.0	0.8	0.7	0.9							sicl			
54-66	Bg ₃	20.2	51.2	28.6	2.1	6.7	5.4	3.8	2.2							sicl/cl			
66-71	BC	16.1	49.1	34.8	0.5	5.4	5.4	3.2	1.6							sicl			
71-90	C	3.7	56.9	39.4	0.1	0.7	0.9	1.0	1.0							sicl/sic			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,0	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-11	7.01		7.10														2.78	132.5	100+
11-16	7.14		7.05														1.47	122	100+
16-21	6.84		6.94														0.17	179.5	100+
21-32	6.38		6.72														0.62	216	100+
32-54	5.29		6.29														0.56	165.5	100+
54-66	5.24		6.17														0.93	247	100+
66-71	5.55		6.52														1.22	250+	100+
	·					м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns				<u></u>		
Horizon	zon Sand + Silt													Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Nicholson, silt loam (Taxadjunct)

Pedon #: S96KY-227-10-(1-8)

Classification: Fine-silty, mixed, active, mesic Oxyaquic Fraglossudalfs

Location: Warren Co., KY; approximately 0.18 mile south of the intersection of William Natcher Parkway and 31-W; 0.9 mile west of Bennett Road; then 0.13 mile north of Bennett road in outdoor classroom site. Longitude: 86° 28'05"; Latitude: 36° 56'06"

Parent Material:

Vegetation:

Landscape Position: Karst depression

Drainage: Moisture when sampled: Sampling Date: 9/19/96 Permeability:

Slope: 3%

Described by: Michael J. Mitchell

Ap—0 to 8 inches; brown (10YR 4/3) silt loam; weak very fine granular structure; friable; many fine and medium roots; abrupt wavy boundary.

Bt1—8 to 12 inches; yellowish brown (10YR 5/4) silt loam; <5% black concretions; weak fine subangular blocky structure; friable; common fine and very fine roots; clay films (7.5YR 5/4) coating on ped faces; gradual wavy boundary. Bt2—12 to 20 inches; yellowish brown (10YR5/6) light silty clay loam; <2% black and brown concretions; moderate medium subangular blocky structure; firm; common fine roots; common distinct clay films (10YR5/4) between ped faces; gradual wavy boundary.

Bt3—20 to 26 inches; yellowish brown (10YR 5/6), 20% light yellowish brown (10YR 6/4) iron accumulations; silty clay loam; moderate medium subangular blocky structure; firm; common fine roots; common distinct clay films (10YR 5/6) on ped faces; <1% ironstone fragments; gradual wavy boundary.

B/E—26 to 31 inches; 60% light yellowish brown (10YR 6/4) Epart; 20% very pale brown (10YR7/3), 15% light gray (10YR7/2) clay depletions, 5% black stains and concretions, silt loam; coarse prismatic parting to moderate medium subangular blocky structure; very firm; few fine roots; common distinct clay films; <1% ironstone fragments; abrupt wavy boundary. Bx1—31 to 38 inches; pale brown (10YR 6/3) silt loam; common black concretions and stains; common medium distinct light gray (10YR 7/2) clay depletions; very coarse prismatic structure; very firm; brittle; compact; few fine roots between ped faces; common distinct clay films; <1% ironstone; abrupt smooth boundary.

BC—38 to 56 inches; yellowish brown (10YR 5/6) silty clay loam; many medium distinct light gray (10YR 7/1) clay depletions on coating over peds and faces; many black concretions and stains; moderate medium subangular blocky structure; firm; few fine roots; common distinct clay films; gradual wavy boundary.

C—56 to 67 inches; gray (10YR 5/1) silty clay; 20% dark yellowish (10YR4/6) iron accumulations throughout layer; common black concretions; massive; very firm; few fine roots in channels.

SOIL TYPE...... NICHOLSON (TAXADJUNCT) LOCATION WARREN COUNTY, KENTUCKY

								1	Particle Size Class and Particle Diameter (mm)													
								3/	A1								2/	12	3B1a			
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents			
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76			
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of			
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm			
8-12	Bt,	14.5	69.6	15.9	4.7	1.7	1.2	3.6	3.3							sil						
12-20	Bt,	8.2	64.6	27.2	1.9	0.7	0.7	2.3	2.6							sil/sicl						
20-26	Bt,	9.9	64.5	25.6	2.7	1.3	0.8	2.7	2.4							sil/sicl						
26-31	B/Ē	13.3	65.5	21.2	4.6	1.3	1.2	3.0	3.2							sil						
	pH Exchangeable Bases (5A1)							1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6			
				6N2z	602z	602z	6P2z	5B1a	5A1z		1											
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray			
Depth	(1:1)	(1:1)	SMP	meg/	meg/	meq/	meg/	meq/	meg/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1			
in	H,O	KCI	Buff.	100gm	100am	100am	100am	100	100					100	2 , 3	3	Det	nnm	nnm			
	<u> </u>						roogin	luugm	100gm	Pct	Pct	100 gm	100gm	luugm	Pct	Eq. Pct	PCT	ppin	ppin			
							roogin	TUUgm	Tuugm	Pct	Pct	100 gm	100gm	Tuugm	Pct	Eq. Pct	PCT	ppin	ppin			
	1					M	ineralogical	Analysis—	Estimated P	Pct ercentages	Pct s in Various	100 gm Size Fractio	ns	Tougm	Pct	Eq. Pct	PCL	ppin				
Horizon				Sand	+ Silt	M	ineralogical	Analysis—	Estimated P	Pct	Pct s in Various	100 gm Size Fractio	100gm ns	Clay	Pct	Eq. Pct	PCt	ppm				
Horizon	Q	F	MI	Sand	+ Silt 2:1	M	ineralogical	Analysis CA	Estimated P	Pct ercentages V	Pct s in Various HIV	100 gm Size Fractio	ns INT	Clay K	MI	Eq. Pct	GI	GO	F			
Horizon Bt,	Q 68	F	MI	Sand K 10	+ Silt 2:1 10	INT 12	ineralogical	Analysis— CA	Estimated P	Pct ercentage: V	Pct s in Various HIV	100 gm Size Fractio	100gm ns INT	Clay K	MI	Eq. Pct	GI	GO	F			
Horizon Bt ₁ Bt ₂	Q 68 78	F 11	MI 11	Sand K 10	+ Silt 2:1 10	INT 12	ineralogical	CA	Estimated P	Pct ercentage: V	Pct s in Various	100 gm Size Fractio	IOOgm ns INT	Clay K	MI	Q	GI	GO				
Horizon Bt ₁ Bt ₂ Bt ₃	Q 68 78 83	F 11 17	MI 11	Sand K 10	+ Silt 2:1 10	M	ineralogical	CA	SM	Pct ercentages V	Pct s in Various HIV	Size Fractio	IOOgm ns INT	Clay K	MI	Q	GI	GO	F			

Nolin, silt loam

Pedon #: S01KY-129-01-(1-4)

Classification: Coarse-loamy, active, mixed, mesic Dystric Fluventic Eutrudepts

Location: Lee County, near confluence of North Fork and Middle Fork of Kentucky River, Beattyville quadrangle. Latitude: 37° 35′ 20″; Longitude: 83° 39′ 48″

Parent Material: Alluvium of Pennsylvanian sandstones, siltstones, and shales.

Vegetation: Fescue

Landscape Position: Low terrace

Drainage:

Moisture when sampled:

Sampling Date: 02/02/01 Permeability:

Slope: 2%

Described by: JDM

Ap—0 to 10 inches; brown (10YR 4/3) silt loam; weak fine granular structure; very friable; common fine roots; neutral; abrupt wavy boundary.

Bw1—10 to 22 inches; dark yellowish brown (10YR 4/4) silt loam; weak medium subangular blocky structure; very friable; common fine and medium roots; few fine tubular pores; slightly acid; clear smooth boundary.

Bw2—22 to 32 inches; dark yellowish brown (10YR 4/4) silt loam; moderate medium subangular blocky structure; friable; very few fine roots; slightly acid; clear smooth boundary.

BC—32 to 60 inches; dark yellowish brown (10YR 4/4) silt loam; weak coarse subangular blocky structure; friable; very few, very fine roots; slightly acid; clear smooth boundary.

CB—60 to 80 inches; dark yellowish brown (10YR 4/4) sandy loam; loose; firm; few fine and medium roots; 50 percent siltstone and shale channers; very strongly acid; clear smooth boundary.

SOIL TYPE	NOLIN	PEDON #	01KY-129-01-(1-5)
LOCATION	LEE COUNTY, KENTUCKY	GENERAL METHODS	1A1 1A2 1B1B 2A1

		Particle Size Class and Particle Diameter (mm)																	
								3/	1			,					24	2	3B1a
			Total		Ĩ		Sand	5,		\$	ilt	1 1		Sand	VES Plue	-	<u>, -</u> (03	rse Fragme	ante
			Cile	Int IV	Voru	1	Janu	1	Voru			-		Coorcor	C:I4			2 10	10.76
			SIIL	Inc. IV	very	-			very	(a a =				Coarser	SIIL			2-19	19-70
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	lextural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-10	Ар	47.2	41.0	11.8	0	0.1	1.0	19.4	26.7							I			
10-22	Bw ₁	46.2	39.0	14.8	0	0	0.2	14.9	31.1										
22-32	Bw,	51.4	35.4	13.2	0	0	0.2	20.9	30.3							l/sl			
32-60	BC	43.1	41.8	15.1	0	0	0.1	11.9	31.1										
		рН			Ex	changeabl	e Bases (5A	1)	Base Saturation 6G1x				6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	н,о	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
Bw ₁ 10-22"	5.00			2.04	0.65	0.06	0.01	2.76	7.08	39	25		8.37	11.13					
Bw ₂ 22-32"	5.03			1.99	0.65	0.06	0.02	2.72	6.26	43	25		8.32	11.04					
					·	Mi	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns			·			·
Horizon				Sand	+ Silt		_	-						Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Orrville, loam (Taxadjunct)

Pedon #: S92KY-031-38-(1-5)

Classification: Coarse-loamy, mixed, active, nonacid, mesic Oxyaquic Dystrudepts

Location: Butler Co., KY; approximately 100 feet south of Kentucky 79 and 2200 feet west of US 231 in bottom on the Thomas Ragland Farm.

Parent Material: Alluvium

Vegetation:

Landscape Position: Bottom

Drainage:

Moisture when sampled:

Sampling Date: 7/20/92

Permeability:

Slope: 1%

Described by: Michael Mitchell

Ap—0 to 6 inches; Brown (10YR 4/3) loam; weak fine granular structure; common fine roots; slightly acid; abrupt wavy boundary.

E—6 to 11 inches; Pale brown (10YR 6/3) loam; few fine distinct dark yellowish brown (10YR 4/6) mottles; weak fine granular structure; friable; slightly acid; abrupt wavy boundary.

Bw1—11 to 28 inches; Yellowish brown (10YR 5/4) loam; commonfine distinct brown (10YR 5/3) and dark yellowish brown (10YR 4/6) mottles; weak fine subangular blocky structure; friable; few fine roots; strongly acid; gradual wavy boundary.

Bg1—28to 39 inches; Light brownish gray (10YR6/2) loam; common fine distinct dark yellowish brown (10YR 4/4) mottles; weak fine subangular blocky structure; friable; strongly acid; gradual wavy boundary. Bg2—39to 54 inches; Light brownish gray (10YR6/2) loam; common fine distinct dark yellowish brown (10YR 3/4), and few fine distinct grayish brown (10YR 5/2) mottles; weak fine subangular blocky structure; friable; strongly acid; gradual wavy boundary.

C1—54 to 73 inches; Light brownish gray (10YR6/2) sandy loam; massive; firm; few black stains; strongly acid; abrupt wavy boundary.

C2—73 to 80 inches; Light brownish gray (10YR6/1) sandy loam; common medium distinct yellowish brown (10YR 5/6) mottles; massive; firm; common black concretions; slightly acid.

SOIL TYPE.		В	ORRVILL UTLER COL	E (TAXADJU JNTY, KENT	JNCT) UCKY	PEDON # GENERA	L METHOD	S	S9	2KY-031-0 1A1 1A2 1)38-(1-5) B1B 2A1									
									Particle Size	Class and	Particle Dia	meter (mm))							
								3/	3A1								2/	42	3B1a	
			Total			Sand				Silt				Sand	VFS Plus		Coa	rse Fragme	ents	
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76	
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of	
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm	
0-6	Ар	25.1	63.8	11.1	0.2	0.6	3.4	12.8	8.1							sil				
6-11	E	19.4	71.6	9.0	0.2	0.5	1.8	9.6	7.3							sil				
11-28	Bw ₁	24.9	64.1	11.0	0.4	0.8	1.6	11.5	10.6							sil				
28-39	Bg ₁	36.5	52.0	11.5	1.1	1.7	2.3	14.6	16.8							sil				
39-54	Bg,	41.0	47.8	11.2	0.6	1.2	2.7	18.4	18.1							l/sil				
11-40	C.S.	29.7	58.0	12.3	0.5	0.7	2.0	13.9	12.8							sil				
		рН			E	changeabl	e Bases (5A	1)	Base Saturation			6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6	
				6N2z	602z	602z	6P2z	5B1a	5A1z											
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray	
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1	
in	H ₂ O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm	
						м	ineralogical	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns							
Horizon				Sand	+ Silt									Clay						
	Q	F MI K CL INT RE C						CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F	
C.S.	90	7	3																	

Otwell, silt loam

Pedon #: S90KY-135-14-(1-6)

Classification: Fine-silty, mixed, mesic, Oxyaquic Fragiudalfs

Location: Lewis County, Kentucky; Atlas sheet 3A; about 3.1 miles northwest of the junction of KY-57 and KY-8 at Concord, about 1,720 feet north of KY-8, about 240 feet west of farm road, and about 300 feet north of the CSX railroad tracks. x: 2,194,000 feet; Latitude: 38° 41′ 45″; y: 434,500 feet; Longitude: 83° 33′ 25″

Parent Material: Mixed alluvium of the Ohio River floodplain, Quaternary Geologic System Vegetation: Plowed ground, some scattered orchard grass

Landscape Position: Terrace

Drainage:

Moisture when sampled: Moist

Sampling Date: 6/26/90

Permeability:

Slope: 4%

Described by: S. Jacobs and D. Dotson

Ap—0 to 9 inches (0 to 23 cm); dark grayish brown (10YR 4/2) silt loam; weak fine granular structure; very friable; few fine roots; common rounded gravels and pebbles (2

mm to 5 inches in diameter); slightly acid; clear smooth boundary.

BA—9 to 15 inches (23 to 38 cm); yellowish brown (10YR 5/4) and dark grayish brown (10YR4/2) silt loam; weak fine subangular blocky and granular structure; friable; few fine roots; medium acid; clear smooth boundary.

Bt1—15 to 23 inches (38 to 58 cm); yellowish brown (10YR 5/4) silt loam; weak fine and medium subangular blocky structure; firm; few fine roots; common faint clay films on ped surfaces; strongly acid; gradual smooth boundary.

Bt2—23 to 29 inches (58 to 74 cm); yellowish brown (10YR 5/4) silt loam; common fine faint pale brown (10YR 6/3) mottles; weak fine and medium subangular blocky structure; firm; few fine roots; many faint clay films on ped surfaces; very strongly acid; abrupt wavy boundary. Btx1—29 to 40 inches (74 to 102 cm); yellowish brown (10YR 5/4) silt loam; many medium and coarse faint gray (10YR 6/1) mottles, many medium faint pale brown (10YR 6/3) mottles, and common fine faint yellowish brown (10YR 5/8) mottles; strong coarse prismatic structure; brittle; few medium dark yellowish brown (10YR 4/4) manganese stains; strongly acid; gradual smooth boundary.

Btx2—40 to 65 inches (102 to 165 cm); dark yellowish brown (10YR 4/6) silt loam; many medium and coarse faint pale brown (10YR 6/3) and gray (10YR 6/1) mottles, common fine faint yellowish brown (10YR 5/8) mottles; strong very coarse prismatic structure; brittle; common medium dark yellowish brown (10YR 4/4) manganese stains; strongly acid.

SOIL TYPE	OTWELL	PEDON #	
LOCATIONLEWIS	S COUNTY, KENTUCKY	GENERAL METHODS	1A1 1A2 1B1B 2A1

		Particle Size Class and Particle Diameter (mm)														-			
								3.	A1								2/	A2	3B1a
			Total				Sand		Silt					Sand	VFS Plus]	Coa	oarse Fragments	
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-9	Ар	28.7	55.9	15.4	0.7	1.0	1.6	12.3	13.1							sil			
9-15	BA	26.0	55.1	18.9	0.9	1.8	1.5	9.9	11.9							sil			
15-23	Bt ₁	26.7	52.7	20.6	0.8	1.4	1.1	8.9	14.5							sil			
23-29	Bt,	32.0	50.0	18.0	1.7	2.0	1.4	11.0	15.9							sil/l			
29-40	Btx,	32.5	47.4	20.1	0.9	1.5	1.3	16.8	12.0					1		1			
40-65	Btx,	25.8	51.2	23.0	0.3	1.1	1.0	7.5	15.9					1		sil			
		pН			E	xchangeab	e Bases (5A	1)	Base Saturation			6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z					1	1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₂	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
														1					
				•		M	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns	•		•			-
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	К	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Phillippy, silty clay loam (Taxadjunct)

Pedon #: S01KY-075-03-(1-6)

Classification: Fine loamy, mixed, thermic Fluvaquentic Hapludolls

Location: Fulton County, Kentucky; 7.4 miles west of Hickman along KY Hwy 94 in the Lower Bottom to Sassafras Ridge, then 2.6 miles on a line due west of the intersection of KY Highways 94 and 971 at Sassafras Ridge on the west side of a drainage canal, then 500 feet south into a cultivated field; Bondurant 7.5 minute USGS quadrangle; on soil map sheet 21T; east 936,000 feet and north 100,400 feet by the Kentucky coordinate system Parent Material: Mississippi River clayey overwash over loamy alluvium

Vegetation: soybean residue

Landscape Position: low-lying ridge of the Mississippi River flood plain

Drainage: moderately well drained

Moisture when sampled: moist

Sampling Date: 11/17/00

Permeability: slow to 20 inches; moderate from 20 inches to 36 inches; moderately rapid in the substratum

Slope: <1 percent

Described by: J.E. McIntosh and P.G. Gregory

Ap—0 to 5 inches; very dark brown (10YR 3/3) silty clay loam, brown (10YR 5/3 dry); moderate medium granular structure; friable, many fine roots; slightly acid (pH 6.5); abrupt smooth boundary.

A—5 to 20 inches; very dark grayish brown (10YR 3/2) silty clay loam/silty clay, grayish brown (10YR 5/2 dry); moderate medium subangular blocky structure; very firm; common fine roots; neutral (pH 6.8); clear smooth boundary.

2Bw1—20 to 25 inches; brown (10YR 4/3) loam/silt loam; moderate fine and medium subangular blocky structure; friable; few fine roots; few medium distinct grayish brown (10YR 5/2) iron depletions on surfaces along pores; few medium distinct strong brown (7.5YR 4/6) masses of iron accumulations around depletions; neutral (pH 6.8); clear smooth boundary. 2Bw2—25 to 36 inches; brown (10YR 4/3) very fine sandy loam; weak medium subangular blocky structure; very friable; very few fine roots; few medium distinct grayish brown (10YR 5/2) iron depletions on surfaces along pores; common fine distinct strong brown (7.5YR 4/6) masses of iron accumulations around depletions; neutral (pH 6.8); clear smooth boundary.

2C1—36to62inches; lightolive brown (2.5Y 5/3) loamy fine sand; single grain; loose; common medium faint grayish brown (2.5Y 5/2) iron depletions on surfaces along pores; common medium prominent strong brown (7.5YR 4/6) masses of iron accumulations around depletions; neutral (pH 7.0); gradual smooth boundary.

2C2—62 to 80 inches; 50 percent light olive brown (2.5Y 5/3) and 50 percent light brownish gray (2.5Y 6/2) loamy fine sand; single grain; loose; common medium prominent gray (2.5Y 5/1) iron depletions; neutral (pH 7.0).

									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-5	Ар	2.9	71.7	25.4	0.1	0.2	0.3	0.7	1.6							sil			
5-20	A	4.6	61.1	34.3	0	0.1	0.2	0.8	3.5							sicl			
20-25	2Bw ₁	29.6	50.0	20.4	0	0.1	0.1	1.7	27.7							sil/l			
25-36	2Bw	49.2	37.8	13.0	0	0.1	0.1	6.3	42.7										
36-62	2C,	49.1	42.3	8.6	0	0.1	0.1	4.8	44.1		1					l/sl			
62-80	2C,	80.4	13.5	6.1	0	0	0.1	12.6	67.7		1					ls			
	<u> </u>	рН			E	kchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	_																		
						м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Purdy, silty clay loam (Taxadjunct)

Pedon #: S99KY-011-02-(1-4)

Classification: Fine-silty, mixed, active, mesic Typic Endoaquults

Location: Bath County, Kentucky; Salt Lick NW Quarter Quad, update sheet 237; about 1.9 miles S of the junction of US-60 and Kentucky Highway 211 in Bath Co.; about 0.8 mile Eof Kentucky Highway 211 and Mud Lick Road; about 880 feet E of Kentucky Highway 211; and about 1200 feet SW of Salt Lick Creek.

4.0

5.3

pН

8C1c

(1:1)

KCI

F

59.7

60.3

8D7

SMP

Buff.

MI

36.3

34.4

6N2z

Ca

meq/

100gm

Κ

0

0

602z

Mg

meq/

100gm

CL

Sand + Silt

Parent Material: Alluvium

Btg

Cg

8C1a

(1:1)

H₂O

Q

15-42

42-75

Depth

in

Horizon

Vegetation: nutsedge, broomsedge, alder seedlings, shellbark hickories, pin oak, sweet gum

Landscape Position: Flood plain

Drainage:

Moisture when sampled: moist

Sampling Date: 12/03/98

Permeability:

Slope: 1%

Described by: D. Hines and S. Jacobs

0.1

0.2

602z

Κ

meq/

100gm

INT

Exchangeable Bases (5A1)

Ap—0 to 8 inches (0 to 20 cm); olive gray (2.5Y 5.2) silty clay loam; common coarse prominent red (2.5YR 4/6) and common medium prominent strong brown (7.5YR

0.7

1.0

6P2z

Na

meq/

100gm

RE

5/6) redox accumulations; weak fine subangular blocky structure; friable; many fine and common medium roots; 5 percent rounded quartz pebbles; common light olive brown (2.5Y 5/3) silt coats on pressure faces; very strongly acid; gradual smooth boundary.

Bg—8 to 15 inches (20 to 38 cm); light brownish gray (2.5Y 6/2) silty clay loam; many fine and medium prominent strong brown (7.5YR 5/8) redox accumulations; weak medium subangular blocky structure; friable; common fine and medium roots; 5 percent rounded quartz pebbles; many distinct grayish brown (2.5Y 5/2) silt coatings on burrows and faces of peds; very strongly acid; diffuse smooth boundary.

6G1x

H+AI

meq/

100 gm

CL

6H1a

EA

meq/

100gm

INT

5A3a

SC

meq/

100gm

Clay

Κ

Fe,O,

Pct

MI

Btg—15 to 42 inches (38 to 107 cm); gray (2.5Y 6/1) silty clay; many medium and coarse prominent strong brown (7.5YR 5/8) redox accumulations; weak medium subangular blocky structure; friable; common and medium fine roots; 5 percent rounded quartz pebbles; many distinct clay films on faces of peds; very strongly acid; diffuse wavy boundary.

Cg—42 to 72 inches (107 to 183 cm); gray (2.5Y 6/1) silty clay; many very coarse distinct yellowish brown (10YR5/8) and common medium and coarse reddish brown (2.5YR 4/4) redox accumulations; massive; firm; one fine root; 5 percent rounded quartz pebbles; very strongly acid.

2A2

>2 Pct

6A1a

Organic

Matter

Pct

GI

Textural

Class

sil sil/sicl

sicl

sicl

6N7

CaCO,

Eq. Pct

Q

Coarse Fragments 2-19 1

Pct of

<76mm

60sz

κ

ppm

GO

3B1a

19-76

Pct of

<76mm

6S6

P Bray

No.1

ppm

F

SOIL TYPE.	••••••		PURD BATH COU	Y (TAXADJI JNTY, KENT	JNCT) UCKY	PEDON # GENERA	‡ L METHOD	S	S	99-KY-011 1A1 1A2 1	-02-(1-4) B1B 2A1					
									Particle Size	Class and	Particle Dia	meter (mm)				
								3.	A1							ſ
			Total Sand VFS													
			Silt	Int. IV	Very				Very					Coarser	Silt	l
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	l
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	
0-8	Ар	7.7	67.7	24.6	0.2	0.8	1.9	2.2	2.6							ſ
8-15	Ba	3.0	60.3	27.7	0	0.2	0.7	0.1	2.0		1					Г

1.1

1.3

5B1a

TEB

meq/

100gm

CA

Minerals: SM = smectite; V = vermiculite; HIV = hydroxyinterlayered vermiculite; CL = chlorite; INT = interstratified; K= kaolinite; MI = mica; Q = quartz; GO = goethite; GI = gibbsite; F = feldspars; CA = calcite; RE = other resistant minerals

2.1

2.8

5A1z

CEC

meq/

100gm

SM

Mineralogical Analysis—Estimated Percentages in Various Size Fractions

Base Saturation

5C3

Pct

HIV

5C1

Pct

V

Ramsey, loam

Pedon #: S94KY-133-02-(1-4)

Classification: Loamy, siliceous, subactive, mesic Lithic Dystrudepts

Location: Letcher County, Ky; Whitesburg Topographic Quadrant; 100' W of old sand pit road, 200' NE of the Little Shepherd Trail on Pine Mountain. x: 2,856,200, y: 2,821,250 **Parent Material:** Residuum of Lower Pennsylvanian Lee Sandstone

Vegetation: Black oak, red maple, and Virginia pine

Landscape Position: Ridge top

Drainage:

Moisture when sampled:

Sampling Date: 7/21/94

Permeability:

Slope: 45 percent

Described by: P.S. Aldridge

A—0 to 1 inches; dark brown (10YR 3/3) loam; weak fine granular structure; very friable; many fine and medium roots; 5 percent sandstone channers; extremely acid; abrupt smooth boundary.

Bw1—1 to 7 inches; yellowish brown (10YR 5/6) loam; weak fine subangular structure; friable; common fine and medium and few coarse roots; 5 percent sandstone channers; strongly acid; clear smooth boundary. Bw2—7 to 12 inches; yellowish brown (10YR 5/6) loam; moderate medium subangular structure; friable; common fine and medium roots; 10 percent sandstone channers; strongly acid; clear smooth boundary.

BC—12 to 16 inches; yellowish brown (10YR 5/8) channery loam; weak medium subangular structure; friable; common fine roots; 25 percent sandstone channers; strongly acid; abrupt smooth boundary.

R—12 to 16 inches; sandstone bedrock.

SOIL TYPE. LOCATION		LE	TCHER COL	RA JNTY, KENT	MSEY UCKY	PEDON # GENERA	t L METHOD	S	S	94KY-133 1A1 1A2 1	02-(1-4) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-1	A	60.2	28.3	11.5	2.1	7.8	17.2	24.9	8.2							sl			
1-7	Bw ₁	50.9	32.4	16.7	0.5	1.3	11.9	26.9	10.3							l/sl			
7-12	Bw,	48.4	34.4	17.2	0.8	1.0	10.6	25.6	10.4						1	1			
12-16	BC	50.5	34.1	15.4	0.8	0.9	11.2	26.4	11.2						1	l/sl			
		рН			E	xchangeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a	1	6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogical	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bw2	98	2																	
BC	100																		

Rigley, loam (Taxadjunct)

Pedon #: S95KY-119-03-(1-6)

Classification: Coarse-loamy, mixed, active, mesic Typic Dystrudepts

Location: Knott County, Carrie topographic quadrant; 1000 feet north of Kentucky Highway 80; 3 miles west of Hindman, Kentucky. Latitude: 37° 22' 00"; Longitude: 83° 02' 36"

Parent Material: Colluvium of Mississippian siltstone of the Granger formation

Vegetation: Yellow poplar, shagbark hickory, and sugar maple

Landscape Position: Back slope

Drainage:

Moisture when sampled:

Sampling Date: 11/06/95

Permeability:

Slope: 55%

Described by: P.S. Aldridge

Oi-0 to 2 inches; partially decomposed leaf litter.

A—2 to 5 inches; dark brown (10YR 3/3) loam, brown (10YR 5/3) dry; weak fine granular structure; very friable; many fine roots; 1 percent sandstone channers; slightly acid; clear smooth boundary.

BA—5 to 9 inches; dark yellowish brown (10YR 4/6) loam; weak fine granular structure; very friable; many fine and medium, and few coarse roots; 5 percent sandstone channers; moderately acid; clear smooth boundary.

Bw1—9to 18 inches; dark yellowish brown (10YR4/6) loam; weak fine subangular blocky structure; very friable; common fine, medium and coarse roots; 10 percent sandstone channers; strongly acid; clear smooth boundary.

Bw2—18 to 26 inches; dark yellowish brown (10YR 4/6) channery loam; weak fine subangular blocky structure; friable; fewfine, medium and coarse roots; 30 percents and stone channers; slightly acid; clear smooth boundary.

Bw3—26 to 32 inches; yellowish brown (10YR 5/6) very channery loam; weak fine subangular blocky structure;

friable; few fine and medium roots; 35 percent sandstone channers and 15 percent sandstone flagstones; moderately acid; clear smooth boundary.

Bw4—32 to 52 inches; yellowish brown (10YR 5/6) very channery loam; weak fine subangular blocky structure; friable; few fine roots; 60 percent sandstone channers; faint sand bridging within peds; slightly acid; clear smooth boundary.

CB—52 to 62 inches; brownish yellow (10YR6/8) extremely stony sandy loam; weak coarse subangular blocky structure; firm; few fine roots; 90 percent sandstone channers; strongly acid; abrupt wavy boundary.

R-62 inches; sandstone bedrock

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								24	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
2-5	A	52.1	33.5	14.4	5.1	6.1	15.9	16.7	8.3							sl/l			
5-9	BA	49.6	35.0	15.4	4.0	5.8	15.3	15.9	8.6							I			
9-18	Bw1	48.1	36.3	15.6	4.0	6.0	15.2	15.1	7.8							I			
18-26	Bw2	44.6	38.2	17.2	3.8	5.2	14.2	13.7	7.7							1			
26-32	Bw3	46.8	37.6	15.6	6.1	7.0	12.0	14.4	7.3		1					1			
32-52	Bw4	57.4	31.4	11.2	4.5	8.5	19.7	16.7	8.0		1					sl			
		pН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
2-5	5.69										1								
5-9	4.84																		
9-18	4.95																		
18-26	5.22					1	1												
26-32	5.31				ĺ		1				ĺ								
32-52	5.17				İ														
	•					M	ineralogical	Analysis—	Estimated F	ercentage	s in Various	Size Fractio	ns	•	•			•	
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Robinsonville, silt loam (Taxadjunct)

Pedon #: S98KY-075-02-(1-6)

Classification: Fine-loamy, mixed, superactive, thermic Fluventic Hapludolls

Location: Fulton Co. KY, 8.5 miles west of Hickman along KY Hwy 94 in the Lower Bottom, 1.8 miles NW of Sassafras Ridge, about 1000 feet west of the S-curve just north of Pond Slough; Bondurant 7.5 minute quadrangle; on soil map sheet 9B, east 942,900 feet and north 106,500 feet by the Kentucky coordinate system.

 Parent Material: Mississippi River loamy alluvium
 Ap1-0 to 3

 Vegetation: soybean residue
 sill loam; d.

 Landscape Position: Mississippi River flood plain/low
 medium gr

 lying terrace
 smooth box

 Drainage: Well drained
 Ap2-3 to

 Moisture when sampled: Moist
 3/2) silty cla

 Sampling Date: 5-28-98
 moderate n

 Permeability: Moderate
 smooth box

 Slope: < 1%</td>
 A-9 to 13 j

Described by: J. E. McIntosh and P. G. Gregory

Ap1—0 to 3 inches; very dark grayish brown (10YR 3/2) silt loam; dark grayish brown (10YR 4/2) dry; moderate medium granular structure; very friable; common fine roots; few krotivinas; moderately acid (pH 5.9); clear smooth boundary.

Ap2—3 to 9 inches; very dark grayish brown (10YR 3/2) silty clay loam; dark grayish brown (10YR 4/2) dry; moderate medium subangular blocky structure; friable; few fine roots; few krotivinas; slightly acid (pH 6.1); clear smooth boundary.

A—9 to 13 inches; very dark grayish brown (10YR 3/2) silt loam, brown (10YR 4/3)dry; weak fine subangular blocky structure; friable; very few fine roots; few krotivinas; neutral (pH 6.6); clear smooth boundary. Bw1—13 to 22 inches; dark brown (10YR 3/3) silt loam; brown (10YR 4/3) dry; weak fine subangular blocky structure; friable; very few fine roots; slightly acid (pH 6.5); clear smooth boundary.

2Bw2—22 to 27 inches; dark yellowish brown (10YR 3/4)loam/fine sandy loam; weak fine subangular blocky structure; very friable; neutral (pH 6.6); clear smooth boundary.

2C-27 to 48+ inches; brown (10YR 4/3) sandy loam; massive; very friable; slightly acid (pH 6.5).

SOIL TYPE	ROBINSONVILLE (TAXADJUNCT)
LOCATION	FULTON COUNTY, KENTUCKY

NVILLE (TAXADJUNCT)	PEDON #	. S98KY-075-02 –(1-6)
N COUNTY, KENTUCKY	GENERAL METHODS	1A1 1A2 1B1B 2A1

									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2/	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus]	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	Ap ₁	17.7	58.9	23.4	0.3	0.2	0.1	8.4	8.7							sil			
3-9	Ap ₂	9.7	57.4	32.9	0.1	0.3	0.5	1.9	6.9							sicl			
9-13	A	13.6	63.8	22.6	0.09	0.1	0.1	1.6	11.7							sil			
13-22	Bw,	23.8	52.4	23.8	0.09	0.1	0.2	4.5	18.9							sil			
22-27	2Bw ₂	71.2	16.0	12.8	0.07	0.09	0.3	22.6	48.1							sl			
27-48+	2C	79.3	2.1	18.6	0.09	0.2	1.5	35.3	42.2							sl			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-3	-																2.48		
3-9							1										2.19		
9-13																	1.40		
13-22																	1.11		
22-27																	0.50		
27-48+																	0.27		
	•					М	ineralogica	Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns		·	•			•
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Sandview, silt loam (Taxadjunct)

Pedon #: \$93KY-239-03-(1-5)

Classification: Fine-silty, mixed, mesic Typic Paleudalfs **Location:** Woodford Co., KY; University of Kentucky farm.

Parent Material: Silt loess over limestone residuum

Vegetation: Fescue, white clover, orchard grass, pasture

Landscape Position: Ridge top Drainage: Moisture when sampled: Moist Sampling Date: 7/1/93 Permeability: Slope: 3% Described by: S. Jacobs A—0 to 14 inches (0 to 36 cm); dark brown (10YR 4/3) silt loam; weak medium subangular blocky structure parting to weak fine granular; friable; many fine roots; slightly acid; gradual smooth boundary.

Bt1—14 to 28 inches (36 to 71 cm); dark brown (7.5YR 4/4) silty clay loam; moderate medium subangular blocky structure; friable; common fine roots; common distinct clay films on ped faces; many black stains and concretions; slightly acid; gradual smooth boundary.

Bt2—28 to 48 inches (71 to 122 cm); dark brown (7.5YR 4/4) silty clay loam; weak fine platy structure parting to

moderate fine and medium subangular blocky; friable; many distinct clay films on ped faces; many black stains and concretions; slightly acid; gradual smooth boundary.

BC—48 to 53 inches (122 to 135 cm); strong brown (7.5YR 4/6) silty clay; weak medium columnar structure parting to weak medium subangular blocky; firm; many black stains and concretions; slightly acid; gradual smooth boundary.

C—53 to 62 inches (135 to 157 cm); yellowish brown (10YR 5/8) clay; massive; very firm; many black stains and concretions; 1 percent chert gravel; medium acid.

••••••	•••••	. SANDVIE\	W (TAXADJU	JNCT)	PEDON #	ŧ		S9	3KY-239-0	003-(1-5)										
	WOOD	DFORD COU	UNTY, KENT	UCKY	GENERA	L METHOD	s	••••••	1A1 1A2 1	B1B 2A1										
								Particle Size	Class and	Particle Dia	meter (mm)									
							3/	A1								2/	42	3B1a		
		Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragme	ents		
		Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76		
	Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of		
Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm		
A	9.2	76.4	14.4	0.6	3.2	2.3	1.8	1.3							sil					
Bt,	9.2	62.3	28.5	1.4	3.8	2.2	1.0	0.8							sicl/sil					
Bt,	15.3	55.3	29.4	1.2	6.5	4.0	2.1	1.5		1					sicl					
BĊ	18.8	41.8	39.4	2.2	7.2	4.8	2.8	1.8							sicl/sic					
C	8.9	33.6	57.5	1.0	2.0	2.1	2.2	1.6							с					
	pН			E	xchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6		
			6N2z	602z	602z	6P2z	5B1a	5A1z						1						
8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray		
(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1		
H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm		
6.21		6.79														2.92	58.5	29.5		
6.22		6.89														0.93	67.5	20		
6.03		6.79														0.52	69	35.5		
5.91		6.63								1						0.59	85.5	47		
5.50		6.09														0.46	89.5	89		
•				·	м	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns		·						
			Sand	+ Silt									Clay							
Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F		
	Horizon A Bt, BC C C 8C1a (1:1) H,O 6.21 6.21 6.22 6.03 5.91 5.50 Q	WOOL Sand Horizon Sand (2-0.05) A 9.2 Bt, Bt, 9.2 Bt, 15.3 BC 18.8 C 8.9 PH 8C1a (1:1) H,O KCI 6.21 6.22 6.03 5.91 5.50 Q F	SANDVIE	SANDVIEW (TAXADJI WOODFORD COUNTY, KENT WOODFORD COUNTY, KENT Wood Silt Int. IV Clay 0.002 <0.002	SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY WOODFORD COUNTY, KENTUCKY Total Total Int. IV Very Sand (0.05- Clay Coarse Horizon (2-0.05) 0.002) <0.002 (2-1) A 9.2 76.4 14.4 0.6 Bt ₁ 9.2 62.3 28.5 1.4 Bt_2 15.3 55.3 29.4 1.2 BC 18.8 41.8 39.4 2.2 C 8.9 33.6 57.5 1.0 PH E 8C1a 8C1c 8D7 Ca Mg (1:1) SMP meq/ meq/ H,O KCI Buff. 100gm 100gm 6.21 6.79 6.03 6.79 5.50 6.09 <tr< td=""><td>SANDVIEW (TAXADJUNCT) PEDON # GENERA WOODFORD COUNTY, KENTUCKY GENERA Total Int. IV Very Coarse Coarse Horizon (2-0.05) 0.002) <0.002 (2-1) (1-0.5) A 9.2 76.4 14.4 0.6 3.2 Bt, 9.2 62.3 28.5 1.4 3.8 Bt, 9.2 62.3 28.5 1.4 3.8 Bt, 9.2 62.3 28.5 1.4 3.8 Bt, 9.2 62.3 28.5 1.0 2.0 C 8.9 33.6 57.5 1.0 2.0 Exchangeable BC1a 8C1c 8D7 Ca Mg KC1 Buff. 100gm 100gm G22 6.89 6.22 6.89 6.22 <th <="" colspan="2" td="" tht<=""><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON # </td><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) PEDON # 993KY-239-003-(1-5) GENERAL METHODS Mathematical Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal</td><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDUREW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) PEDON # Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source</td><td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #</td><td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #</td><td>SANDVIEW (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) S</td></th></td></tr<>	SANDVIEW (TAXADJUNCT) PEDON # GENERA WOODFORD COUNTY, KENTUCKY GENERA Total Int. IV Very Coarse Coarse Horizon (2-0.05) 0.002) <0.002 (2-1) (1-0.5) A 9.2 76.4 14.4 0.6 3.2 Bt, 9.2 62.3 28.5 1.4 3.8 Bt, 9.2 62.3 28.5 1.4 3.8 Bt, 9.2 62.3 28.5 1.4 3.8 Bt, 9.2 62.3 28.5 1.0 2.0 C 8.9 33.6 57.5 1.0 2.0 Exchangeable BC1a 8C1c 8D7 Ca Mg KC1 Buff. 100gm 100gm G22 6.89 6.22 6.89 6.22 <th <="" colspan="2" td="" tht<=""><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON # </td><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) PEDON # 993KY-239-003-(1-5) GENERAL METHODS Mathematical Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal</td><td>SANDVIEW (TAXADJUNCT) PEDON #</td><td>SANDUREW (TAXADJUNCT) PEDON #</td><td>SANDVIEW (TAXADJUNCT) PEDON # Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source</td><td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #</td><td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #</td><td>SANDVIEW (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) S</td></th>	<td>SANDVIEW (TAXADJUNCT) PEDON #</td> <td>SANDVIEW (TAXADJUNCT) PEDON #</td> <td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON # </td> <td>SANDVIEW (TAXADJUNCT) PEDON #</td> <td>SANDVIEW (TAXADJUNCT) PEDON #</td> <td>SANDVIEW (TAXADJUNCT) PEDON # 993KY-239-003-(1-5) GENERAL METHODS Mathematical Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal</td> <td>SANDVIEW (TAXADJUNCT) PEDON #</td> <td>SANDUREW (TAXADJUNCT) PEDON #</td> <td>SANDVIEW (TAXADJUNCT) PEDON # Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source</td> <td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #</td> <td>SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #</td> <td>SANDVIEW (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) S</td>		SANDVIEW (TAXADJUNCT) PEDON #	SANDVIEW (TAXADJUNCT) PEDON #	SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #	SANDVIEW (TAXADJUNCT) PEDON #	SANDVIEW (TAXADJUNCT) PEDON #	SANDVIEW (TAXADJUNCT) PEDON # 993KY-239-003-(1-5) GENERAL METHODS Mathematical Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal	SANDVIEW (TAXADJUNCT) PEDON #	SANDUREW (TAXADJUNCT) PEDON #	SANDVIEW (TAXADJUNCT) PEDON # Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source	SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #	SANDVIEW (TAXADJUNCT) WOODFORD COUNTY, KENTUCKY PEDON #	SANDVIEW (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) PEDON # Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Petron Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) Sogravity (TAXADJUNCY) S

Sandview, silt loam

Pedon #: \$99KY-011-07-(1-6)

Classification: Fine-silty, mixed, active, mesic Typic Hapludalfs

Location: Bath County, Kentucky; Sherburne SE Quarter Quad., update sheet 2B; about 2.1 miles W/SW of Kentucky Highway 11 bridge over the Licking R. at Sherburne, about 1.8 miles S of the junction of Bath/Fleming/Nicholas Co. lines; about 0.6 mile NW of Kentucky Highway 11, and about 400 NE of farm road on a ridge top.

Parent Material: Residuum of Tate Member limestone of the Grant Lake formation

Vegetation: cover crop of wheat

Landscape Position: Ridge top

Drainage:

Moisture when sampled: moist

Sampling Date: 03/04/99 Permeability:

Slope: 3%

Described by: D. Hines

Ap—0 to 10 inches (0 to 25 cm); brown (10YR4/3) silt loam; moderate fine granular structure; friable; common fine roots; slightly alkaline; clear smooth boundary.

Bt1—10 to 27 inches (25 to 69 cm); vellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; few fine roots; few fine soft black masses; common distinct clay films on faces of peds; slightly alkaline; clear smooth boundary.

Bt2—27 to 34 inches (69 to 86 cm); yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; few fine roots; many medium soft black masses; common distinct clay films on faces of peds; slightly alkaline; clear smooth boundary.

Bt3—34 to 39 inches (86 to 99 cm); yellowish brown (10YR 5/6) and light yellowish brown (2.5Y 6/3) silty clay; moder-

ate medium subangular blocky structure; firm; common medium soft black masses; common distinct clay films on faces of peds; neutral; gradual smooth boundary.

Bt4—39 to 55 inches (99 to 140 cm); vellowish brown (10 YR 5/6) and light yellowish brown (2.5Y 6/3) silty clay; weak medium subangular blocky structure; firm; few medium soft black masses; common distinct clay films on faces of peds; moderately acid; gradual smooth boundary.

C—55 to 70 inches (140 to 178 cm); yellowish brown (10YR 5/6) and light olive brown (2.5Y 5/3) silty clay; massive; very firm; few medium soft black masses; 1 percent limestone channers; slightly alkaline; abrupt smooth boundary.

R—70 to 74 inches (178 to 188 cm); hard limestone of the Tate Member of the upper Grant Lake formation.

SOIL TYPE.....SANDVIEW LOCATION BATH COUNTY, KENTUCKY

PEDON # \$99-KY-011-007-(1-6) GENERAL METHODS 1A1 1A2 1B1B 2A1

	1								Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-10	Ap	8.7	71.8	19.5	1.4	2.7	1.8	1.6	1.2							sil			
10-27	Bt,	11.1	63.6	25.3	1.4	3.9	2.7	1.5	1.6							sil/sicl			
27-34	Bt,	20.5	42.9	36.6	7.0	7.1	2.8	1.7	1.9							sicl/cl			
34-39	Bt,	10.1	32.7	57.2	2.8	2.9	1.4	1.1	1.9							с			
39-55	Bt	5.0	29.3	65.7	1.0	1.6	0.9	0.6	0.9							с			
55-70	C	7.9	54.8	37.4	1.4	1.6	1.1	1.1	2.7							sicl/sic			
		pH			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	_																		
						м	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Shelocta, gravelly silt loam (Taxadjunct)

Pedon #: S90KY-135-03-(1-7)

Classification: Coarse-loamy, mixed, active, mesic, Typic Hapludults

Location: Lewis County, Kentucky; Atlas sheet 32A; about 3.1 miles southwest of the confluence of Straight Fork and Kinniconick Creek at Camp Dix, about 2 miles west of confluence of Straight Fork and Mosby Creek, and about 40 feet north of Mosby Creek in road bank. x: 2,262,350 feet; Latitude: 38° 27' 40"; y: 350,550 feet; Longitude: 83° 19' 54"

Parent Material: Shale, siltstone, and sandstone colluvium and residuum of the Borden Formation, Mississippian Geologic System

Vegetation: White oak, northern red oak woodland Landscape Position: Toeslope

Drainage: Moisture when sampled: Moist

Sampling Date: 1/9/90

Permeability:

Slope: 25%

Described by: S. Jacobs and D. Dotson

A—0to4inches (0to10cm); dark brown (10YR3/3) gravelly silt loam; weak fine granular structure; very friable; many fine and common medium roots; 20% sandstone gravels; medium acid; clear wavy boundary.

E-4 to 8 inches (10 to 20 cm); yellowish brown (10YR 5/4) and dark brown (10YR 3/3) gravelly silt loam; weak fine sub-

angular blocky structure parting to weak fine granular; very friable; common fine and medium roots; 20% sandstone gravels; very strongly acid; clear wavy boundary.

Bt1—8 to 15 inches (20 to 38 cm); yellowish brown (10YR 5/4) gravelly silt loam; weak fine subangular blocky structure; friable; common fine and medium roots, few coarse roots; 15% sandstone gravels; common faint clay films on ped surfaces; strongly acid; clear wavy boundary.

Bt2—15 to 23 inches (38 to 58 cm); yellowish brown (10YR 5/8) loam; moderate fine and medium subangular blocky structure; firm; few fine roots; 5% sandstone gravels; many distinct clay films on ped surfaces and on coarse fragments; very strongly acid; gradual smooth boundary.

Bt3—23 to 28 inches (58 to 71 cm); strong brown (7.5 YR5/8) loam; moderate medium subangular and angular blocky structure; firm; few fine roots; 8% sandstone and siltstone gravels; many distinct clay films on ped surfaces and coarse fragments; strongly acid; gradual smooth boundary.

Bt4—28 to 36 inches (71 to 91 cm); strong brown (7.5YR 5/8) loam; common fine faint olive (5Y 5/4) mottles; moderate fine and medium angular blocky structure; firm; few fine roots; 13% sandstone and siltstone gravels; many prominent clay films on ped surfaces; very strongly acid; clear smooth boundary.

Bt5—36 to 40 inches (91 to 102 cm); strong brown (7.5YR 5/8) very gravelly loam; common fine faint olive yellow (5Y 6/8) and olive (5Y 5/4) mottles; moderate fine and medium subangular blocky structure; firm; few fine roots; estimated 50% sandstone and siltstone gravels; many distinct clay films on ped surfaces; very strongly acid.

SOIL TYPE......SHELOCTA (TAXADJUNCT) LOCATIONLEWIS COUNTY, KENTUCKY

	ľ								Particla Size	Class and	Particlo Dia	motor (mm)							
									Particle Size	Class allu	Fai ticle Dia	meter (mm)				r			
								31	41								2/	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragme	ents
			Silt	Int. IV	Very				Very			1		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clav	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0 5-0 25)	(0 25- 01)	(0 1-0 05)	0.02)	(02-002)	(0 2-0 02)	(2-0.2)	(2-0 1)	0 002)	Class	>2 Pct	<76mm	<76mm
0.4	110112011	20.4	50.4	11.2	(2 -1)	(1 0.5) 5 1	2.2	27	12.2	0.02)	(.02 .002)	(0.2 0.02)	(2 0.2)	(2 0.1)	0.002)	ciuss	-210		01</th
0-4	A	29.4	59.4	11.2	5.1	5.1	5.5	2.7	15.2							SII			
4-8	E	25.0	62.7	12.3	3.7	1.8	1.2	2.1	16.2							sil			
8-15	Bt ₁	23.4	64.7	11.9	3.2	2.1	1.0	1.6	15.6							sil			
15-23	Bt,	24.2	58.0	17.8	1.9	1.0	0.6	1.2	19.5							sil			
23-28	Bt,	31.4	45.2	23.4	0.6	0.4	0.5	2.2	27.7		1						1		
28-36	Bt	45.2	33.6	21.2	0.6	0.7	0.7	4.4	38.8		1					1	1		
36-40	Bt_	51.1	28.0	20.9	10.6	9.7	5.1	5.4	20.3							l/scl			
		На			E	kchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
		L. L.		6N2z	602z	602z	6P2z	5B1a	5A1z		1								
	8012	8010	807	G	Ma	ĸ	Na	TER	CEC			Η±ΔΙ	FΔ	sc			Organic		P Brav
Donth	(1.1)	(1.1)	CMD		mag/		mag/			501	502	mon/	/		Fa 0	6-60	Mattar	~	No 1
Depth	(1:1)	(1:1)	Sivie	meq/	meq/	meq/	meq/	meq/	meq/	SCI	505	meq/	meq/	meq/	Fe ₂ O ₃		Matter	n n	NO.1
in	н,о	КСІ	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
											1								

Shelocta, silt loam

Pedon #: S94KY-159-02-(1-7)

Classification: Fine-loamy, mixed, active, mesic Typic Hapludults

Location: Martin County, Kentucky, 4.5 miles southwest of Pigeonroost on Kentucky Highway 1439 to the confluence of Wolf Creek and Meathouse Creek, 2.25 miles south on Kentucky Highway 1439 along Meathouse Creek to a gas well road, 1 mile southeast along the gas well road to the confluence on an intermittent drain and Meathouse Creek; Varney quadrangle

Parent Material: Mixed colluvium from acid shale, siltstone and sandstone

Vegetation:

Landscape Position: Side slope

Drainage: Well drained

Moisture when sampled:

Sampling Date:

Permeability: Moderate

Slope: 30 to 80%

Described by:

Oi—1 to 0 inches; partially decomposed hardwood leaf litter.

A—0 to 3 inches; dark yellowish brown (10YR4/4) silt loam; weak fine and medium granular structure; friable; many fine and medium roots; 5 percent sandstone channers; strongly acid; abrupt smooth boundary.

Bt1—3 to 13 inches; dark brown (7.5 YR 4/4) channery silt loam; moderate fine and medium subangular blocky structure; friable; common fine and medium roots; many distinct clay films on ped faces and in root channels; 15 percent sandstone channers; strongly acid; gradual smooth boundary.

Bt2—13 to 26 inches; strong brown (7.5YR 4/6) silt loam; moderate medium subangular blocky structure; friable; few fine roots; common distinct clay films on ped faces and in root channels; 10 percent sandstone channers; strongly acid; gradual smooth boundary.

Bt3—26 to 36 inches; strong brown (7.5YR 4/6) channery silt loam; moderate medium subangular blocky structure; firm; common distinct clay films on ped faces; 15 percent sandstone channers; strongly acid; clear smooth boundary. Bt4—36 to 52 inches; strong brown (7.5YR 4/6) channery loam; moderate medium subangular blocky structure; firm; many distinct clay films on ped faces; 15 percent sandstone channers; strongly acid; clear wavy boundary.

Bt5—52 to 60 inches; strong brown (7.5YR4/6) loam; moderate fine and medium subangular blocky structure; firm; many distinct clay films on ped faces; 10 percent siltstone channers; strongly acid; clear wavy boundary.

C—60 to 66 inches; strong brown (7.5YR 4/6) extremely channery silt loam; many medium prominent light brownish gray (2.5YR 6/2) redox depletions; massive structure; very firm; 90 percent siltstone channers; medium acid; abrupt wavy boundary.

Cr—66 to 70 inches; fractured siltstone.

SOIL TYPE	SHELOCTA
LOCATION	MARTIN COUNTY, KENTUCKY

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Co	arse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	A	43.0	41.3	15.7	5.8	9.7	12.0	10.5	5.0							I			
3-13	Bt ₁	41.6	41.5	16.9	5.7	6.4	10.8	11.7	7.0							1			
13-26	Bt,	40.0	41.6	18.4	3.6	5.3	11.5	12.4	7.2		1					1			
26-36	Bt,	38.0	42.2	19.8	3.4	4.6	10.6	12.1	7.3		1					1			
36-52	Bt	38.2	42.2	19.6	2.2	4.9	11.4	12.5	7.2							1			
52-60	Bt _c	41.5	38.9	19.6	2.1	4.2	13.3	14.5	7.4							1			
60-66	C	36.9	52.4	10.7	4.8	6.6	9.2	7.5	8.8							sil			
		рН			E	kchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Shelocta, silt loam

Pedon #: S94KY-205-02-(1-7)

Classification: Fine-loamy, mixed, mesic, Typic Hap-ludults

Location: Rowan County, Kentucky, on United States Forest Service Road 117, 3,200 feet north northeast of the intersection of USFS roads 116 and 117; Cranston Quadrangle

Parent Material: Loamy colluvium over residuum of weathered shale and siltstone

Vegetation:

Landscape Position: Lower side slopes

Drainage: Well drained

Moisture when sampled:

Sampling Date:

Permeability: Moderate to slow

Slope: 20 to 50 percent

Described by:

A—0 to 4 inches; brown (10YR 4/3) silt loam; weak fine granular structure; very friable; many fine and medium roots; 2 percent siltstone channers; very strongly acid; clear smooth boundary.

BA—4 to 8 inches; yellowish brown (10YR 5/4) silt loam; weak medium subangular blocky parting to weak fine granular structure; very friable; common fine and medium roots; few fine tubular pores; 2 percent siltstone channers; very strongly acid; gradual smooth boundary.

Bt1—8 to 16 inches; yellowish brown (10YR 5/4) silt loam; weak medium subangular blocky structure; friable; common fine and medium, and few coarse roots; few fine tubular pores; few discontinuous clay films on faces of peds; 5 percent siltstone channers; clear smooth boundary.

Bt2—16 to 24 inches; yellowish brown (10YR 5/6) channery silt loam; moderate medium subangular blocky structure; firm; few fine and medium, and common coarse roots;

common fine tubular pores; common continuous clay films on faces of peds; 20 percent siltstone channers; very strongly acid; clear smooth boundary.

Bt3—24 to 32 inches; yellowish brown (10YR 5/8); channery silt loam; moderate medium subangular blocky structure; firm; few fine and medium roots; common fine tubular pores; common discontinuous clay films on faces of peds; 15 percent siltstone channers; very strongly acid; clear smooth boundary.

2BC—32to 45 inches; yellowish brown (10YR 5/6) channery silt loam; weak medium subangular blocky structure; firm; few fine roots; few fine tubular pores; 25 percent siltstone channers; very strongly acid.

SOIL TYPE.				SHEL	OCTA	PEDON #	¥		S9	94KY-205-0	002-(1-6)								
LOCATION		R	OWAN COU	JNTY, KENT	UCKY	GENERA	L METHOD	s		1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth	Horizon	Sand (2-0.05)	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural	>2 Pct	Pct of	Pct of
0-4	A	20.9	63.5	15.6	21	32	34	32	90	0.02)	(.02 .002)	(0.2 0.02)	(2 0.2)	(2 0.1)	0.002)	sil		370	
4-8	BA	12.2	75.6	12.2	1.1	0.9	11	1.5	7.6		1					sil			
8-16	Bt.	11.3	74.9	13.8	1.6	1.6	1.2	1.3	5.6						1	sil			
16-24	Bt ₂	11.0	62.0	27.0	1.8	2.1	1.1	0.9	5.1							sil			
24-32	Bt,	16.9	62.2	20.9	4.2	4.0	2.7	1.8	4.2							sil			
32-45	2BC	22.3	60.3	17.4	5.2	5.0	3.5	2.9	5.7		İ					sil			
		pН	•		E	kchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
C. S.				0.08	1.34	0.12	1.56	7.3	21	17			7.58	9.14					
						M	ineralogica	l Analysis—	Estimated P	Percentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Shrouts, silty clay loam (Taxadjunct)

Pedon #: S99KY-011-06-(1-5)

Classification: Fine-loamy, mixed, active, mesic, Typic Hapludalfs

Location: Bath County, Kentucky; Owingsville NW Quarter Quad., update sheet 7B; about 0.4 mile E/NE of Reynoldsville in Bath Co.; about 1600 feet N of Kentucky Highway 36; and about 150 feet N of old building foundations on a ridge top. **Parent Material:** Residuum of the shale and dolomite of the Preachersville Member of the Drakes formation

Vegetation: Fescue and bluegrass

Landscape Position: Ridge top

Drainage:

Moisture when sampled: moist

Sampling Date: 03/02/99

Permeability:

Slope: 6%

Described by: D. Hines and S. Jacobs

Ap—0 to 6 inches (0 to 15 cm); brown (10YR 4/3) silty clay loam; moderate medium granular structure; friable; many fine roots; 2 percent limestone and chert channers; moderately alkaline; gradual smooth boundary.

BA—6 to 10 inches (15 to 25 cm); brown (10YR 4/3) silty clay loam; moderate medium subangular blocky structure; friable; common fine roots; 6 percent limestone and chert channers; moderately alkaline; clear smooth boundary.

Bt1—10 to 13 inches (15 to 33 cm); light yellowish brown (2.5Y 6/3) silty clay loam; common medium distinct yellowish brown (10YR 5/6) lithochromic mottles; weak fine subangular blocky structure; friable; few fine roots; 4 percent limestone and chert channers; prominent distinct clay films on faces of peds; moderately alkaline; gradual smooth boundary.

Bt2—13 to 22 inches (33 to 56 cm); light yellowish brown (2.5Y 6/3) and light olive brown (2.5Y 5/4) silty clay; common medium distinct yellowish brown (10YR 5/6) lithochromic mottles; weak fine subangular blocky structure; friable; few fine roots; 30 percent weathered dolomite fragments; common distinct clay films on faces of peds; moderately alkaline; gradual smooth boundary.

C—22to28inches (56to71 cm); light greenish gray (7/5GY) and 20 percent bands of yellowish brown (10YR 5/6) silty clay; massive; firm; 10 percent weathered dolomite; moderately alkaline; abrupt smooth boundary.

Cr—28 to 32 inches (71 to 81 cm); 20 percent thin hard dolomite and 80 percent soft mudstone of the Preachersville Member of the Drakes formation.

SOIL TYPE......SHROUTS (TAXADJUNCT) LOCATIONBATH COUNTY, KENTUCKY

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	arse Fragme	nts
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-15	Ap	36.5	36.2	27.3	0.8	1.9	3.2	13.6	17.0							l/cl			
15-25	BA	41.0	34.9	24.1	3.4	2.7	3.2	12.7	19.1							I			
25-33	Bt ₁	51.7	28.7	19.6	0.9	2.5	3.8	12.1	32.4							l/sl/scl			
33-56	Bt,	63.4	21.8	14.8	5.8	8.3	7.3	17.9	24.1							sl			
56-71	C	43.5	32.1	24.4	2.8	3.6	3.8	8.4	24.9							I			
		pН			Ex	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H ₂ O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						M	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Shrouts, silty clay loam

Pedon #: S99KY-011-11-(1-5)

Classification: Fine, mixed, active, mesic, Typic Hapludalfs

Location: Bath County, Kentucky; Colfax SE Quarter Quad., update sheet 16; about 0.8 miles NE junction of Vance Road and US-60; about 0.2 mile N of Polksville on the northwest facing slope near the summit of a hill.

Parent Material: Residuum of soft calcareous clay shales of the Upper Crab Orchard formation

Vegetation: Fescue, black locust, briars, eastern red cedar

Landscape Position: Ridge top and slide slopes

Drainage:

Moisture when sampled: moist

Sampling Date: 04/08/99

Permeability:

Slope: 26%

Described by: D. Hines and S. Jacobs

A—0 to 4 inches (0 to 10 cm); dark grayish brown (2.5Y 4.2) silty clay loam; moderate medium granular structure; friable; many fine and medium roots; neutral; clear smooth boundary.

Bt1—4 to 13 inches (10 to 33 cm); light olive brown (2.5Y 5/4) silty clay; common fine prominent yellowish brown (10YR 5/6) lithochromic mottles; moderate medium angular blocky structure; firm; common fine and few medium roots; many distinct grayish brown (2.5Y 5/2) clay films on ped surfaces; moderately alkaline; clear smooth boundary.

Bt2—13 to 22 inches (33 to 56 cm); light olive brown (2.5Y 5/4) silty clay; common medium prominent yellowish brown (10YR 5/6) lithochromic mottles; weak medium angular blocky structure; firm; common fine and medium roots; many prominent gray (5Y 6/1) clay films on ped surfaces and shale fragments; 10 percent soft shale; moderately alkaline; gradual smooth boundary.

BC—22 to 28 inches (56 to 71 cm); light olive brown (2.5Y 5/4) channery silty clay; common medium and coarse yellow (2.5Y 7/4) concentrations of carbonates; weak medium angular blocky structure and relic platy structure; very firm; common fine and medium roots; many prominent gray (5Y 6/1) clay films and coatings on ped surfaces and shale fragments; 15 percent very soft shale; moderately alkaline; gradual smooth boundary.

C—28 to 34 inches (71 to 86 cm); olive (5Y 5/3) and light olive brown (2.5Y 5/6) channery silty clay; relic platy shale structure; very firm; 20 percent very soft shale; moderately alkaline; clear smooth boundary.

Cr—34 to 38 inches (86 to 97 cm); alkaline soft clay shale; few fine roots between shale layers.

									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-4	A	10.7	60.6	28.7	1.0	2.8	1.7	1.9	3.3							sicl/sil			
4-13	Bt ₁	7.3	56.5	36.2	0.5	1.8	1.6	1.4	2.0							sicl			
13-22	Bt ₂	7.6	56.3	36.1	1.3	1.5	1.7	1.5	1.6							sicl			
22-28	BC	4.1	62.9	33.0	0.6	0.5	0.4	0.5	2.1							sicl			
28-34	C	4.1	60.3	35.6	1.2	0.7	0.4	0.4	1.4							sicl			
		рН			E	xchangeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z		1				1				
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	H ₂ O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						м	ineralogica	Analysis—	Estimated F	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	К	MI	Q	GI	GO	F

Shrouts, cla	y loam
--------------	--------

Parent Material: Residuum Vegetation:

Pedon #:

Classification: Fine, mixed, active, mesic Typic Haplu-

dalfs Location: Madison Co., KY near Moberly on the EKU

Landscape Position: Upland Drainage: Moisture when sampled:

Sampling Date: Sept., 1999 Permeability: Slope: 6-12% Described by: A.D. Karathanasis and Bill Craddock

Ap—0 to 3 in.; Dark yellowish brown (10YR 4/4) clay loam; moderate granular; friable; abrupt boundary.

Bt1-3 to 11 in.; Light olive brown (2.5Y 5/6) silty clay; moderate angular blocky; friable; clear boundary.

Bt2-11 to 19 in.; Olive yellow (2.5Y 6/6) silty clay/clay; moderate angular blocky; firm; abrupt boundary.

Bt3—19 to 26 in.; Olive yellow (2.5Y 6/6) silty clay; moderate angular blocky; firm; abrupt boundary. Cr—26+ in.

Meadowbrook Farm.

SOIL TYPE SHROUTS	PEDON #
LOCATION MADISON COUNTY, KENTUCKY	GENERA

GENERAL METHODS1A1 1A2 1B1B 2A1

									Particle Size	Class and	Particle Dia	ameter (mm)						
								3	A1								2/	42	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus	1	Coa	arse Fragmo	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	Ар	22.9	45.2	31.9	1.8	2.8	4.4	6.3	7.6							cl			
3-11	Bt ₁	4.7	45.4	49.9	0.7	1.0	0.8	0.8	1.4							sic			
11-19	Bt ₂	5.4	46.8	47.8	0.7	1.0	1.3	1.2	1.2							sic			
19-26	Bt ₃	7.5	45.8	46.7	0.8	1.6	1.6	2.1	1.4							sic			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z						1				
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
0-3	6.90																3.26		
3-11	7.51																0.73		
11-19	7.58																		
19-26	7.53																		
						м	ineralogica	l Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Trappist, silt loam (Taxadjunct)

Pedon #: S90KY-135-26-(1-8)

Classification: Fine, illitic, semiactive, mesic Typic Hapludults

Location: Lewis County, Kentucky; Atlas sheet 7B; about 6.0 miles northeast of Tollesboro, about 1,000 feet northeast of intersection of KY-57 and Quick Run Road, about 1,350 feet north of Sulphur Knob lookout tower, and about 100 feet from barn along farm road. x: 2,210,500 feet; Latitude: 38° 37' 45"; y: 411,800 feet; Longitude: 83° 30' 39"

Parent Material: Residuum from acid, black fissile shale of the Ohio Formation, Devonian Geologic System

Vegetation: Shortleaf pine, woodland

Landscape Position: Toeslope Drainage:

Moisture when sampled: Moist

Sampling Date: 4/12/90

Permeability:

Slope: 10%

Described by: S. Jacobs and D. Dotson

A—0 to 1 inches (0 to 2 cm); dark brown (10YR 4/3) silt loam; moderate fine granular structure; friable; common fine and medium roots; very strongly acid; clear smooth boundary.

E—1 to 4 inches (2 to 10 cm); strong brown (7.5YR 4/6) silt loam; weak fine subangular blocky structure parting to weak fine granular; friable; common fine and medium roots, few coarse roots; very strongly acid; clear wavy boundary.

Bt1—4 to 11 inches (10 to 28 cm); strong brown (7.5YR 5/6) silty clay loam; moderate fine and medium subangular blocky structure; firm; common fine roots; few medium and coarse roots; 5% weathered black fissile shale fragments; common faint clay films on ped surfaces; very strongly acid; gradual smooth boundary.

Bt2—11 to 21 inches (28 to 53 cm); yellowish red (5YR 5/6) silty clay; moderate fine and medium subangular blocky and angular blocky structure; firm; common fine roots, few medium roots, and one coarse root; 10% weathered black fissile shale fragments, many distinct clay films on ped surfaces; very strongly acid; gradual smooth boundary.

Bt3—21 to 26 inches (53 to 66 cm); yellowish red (5YR 5/6) silty clay; moderate fine and medium subangular blocky and angular blocky structure; common fine roots, few coarse roots; 10% pale brown (10YR 6/3) weathered black fissile shale fragments; many distinct clay films on ped surfaces; very strongly acid; clear smooth boundary.

BC—26 to 29 inches (66 to 75 cm); yellowish red (5YR 5/6) and red (2.5YR 5/8) channery clay; common medium distinct pale red (2.5YR 6/2) mottles; moderate medium angular blocky structure; friable; few fine roots, one coarse root; 20% weathered black fissile shale fragments; few faint clay coats on ped surfaces; very strongly acid; clear smooth boundary.

C—29 to 36 inches (74 to 91 cm); dark yellowish brown (10YR 4/4) extremely channery clay; common medium prominent red (10YR 4/8), distinct olive yellow (2.5Y 6/8), and prominent light gray (5Y 7/1) mottles; strong medium platy structure; very firm; few fine and medium roots; 80% weathered black fissile shale; many faint clay coats on shale fragments; extremely acid; clear smooth boundary.

Cr—36 to 45 inches (91 to 114 cm); dark yellowish brown (10YR 4/4) extremely channery clay; strong medium platy structure (99% layered black fissile shale); very firm or hard; very few fine roots between layers greater than 4" apart; extremely acid; abrupt smooth boundary.

R-45 inches (114 cm); layered black fissile shale.

SOIL TYPE.....TRAPPIST (TAXADJUNCT) LOCATIONLEWIS COUNTY, KENTUCKY

									Particle Size	Class and	Particle Dia	meter (mm))						
								3/	A1								2 <i>A</i>	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ants
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-1	A	30.0	47.0	23.0	3.8	17.1	5.0	2.6	1.5							I			
1-4	E	8.3	64.0	27.7	2.0	2.2	1.8	1.3	1.0							sicl/sil			
4-11	Bt ₁	6.2	58.6	35.2	1.8	1.4	1.3	0.9	0.8							sicl			
11-21	Bt,	4.9	47.7	47.4	1.2	1.1	1.0	0.8	0.8							sic			
21-26	Bt,	7.8	45.7	46.5	2.3	1.3	1.0	1.3	1.9							sic			
26-29	BČ	14.6	39.8	45.6	3.3	3.2	2.9	2.9	2.3							sic/c			
29-36	C	21.4	40.6	38.0	6.7	5.0	4.3	3.4	2.0							cl/sicl/c			
36-45	Cr	27.5	43.3	29.2	7.7	7.4	5.4	3.8	3.2							cl			
		рН			Ex	changeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
	_																		
						м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt ₁	85	10	5							10			13	15	40	20			
Bt,	88		8	4						5			10	10	55	20			
Bt ₃	81	4	11	4						5			10	10	60	15			

Trappist, silt loam	Moisture when sampled: Sampling Date:	ture; friable; common fine and medium roots; extremely acid; clear smooth boundary.	Bt3—11 to 15 inches; yellowish brown (10YR 5/6) chan- nery clay; few fine faint brown (10YR 5/3) mottles; weak
Pedon #: S94KY-135-12-(1-5)	Permeability:	Bt1—2 to 6 inches; yellowish brown (10YR 5/4) silty clay	thin platy and weak fine subangular blocky structure; firm: common fine and few medium roots: 20% shale
Classification: Fine, mixed, semiactive mesic Typic	Slope:	firm; common fine and medium roots; 5% shale fragments;	fragments; many faint clay films on ped faces; extremely
Hapiuduits	Described by:	common faint clay films on ped faces; extremely acid;	acid; clear wavy boundary.
Location: Lewis County, Kentucky	O—1 to 0 inches; dark brown (7.5YR 3/3) silt loam; weak	clear wavy boundary.	(7 5YR 5/6) and yellowish brown (10YR 5/6) yery chappery
Parent Material:	fine granular structure; many fine and few medium roots;	Bt2—6 to 11 inches; strong brown (7.5YR 5/6) silty clay;	clay; weak thin and medium platy structure; firm; common
Vegetation:	clear smooth boundary.	fine and few medium roots: 5 to 10% shale fragments.	fine and medium roots; few coarse roots; 50% shale frag-
Landscape Position:	A/B—0 to 2 inches; yellowish brown (10YR 5/4) silt loam;	common faint clay films on ped faces; extremely acid;	ments; extremely acid; clear smooth boundary.
Drainage:	weak fine granular and weak fine subangular blocky struc-	clear wavy boundary.	Cr—29 inches; soft black shale bedrock.

SOIL TYPE.....TRAPPIST

LOCATION	••••••		LEWIS COU	JNTY, KENT	UCKY	GENERA	L METHODS	5	•••••	1A1 1A2 1	B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-2	A/B	11.7	66.9	21.4	3.2	3.9	2.3	1.3	1.0							sil			
2-6	Bt ₁	6.7	61.1	32.2	2.2	2.1	1.2	0.7	0.5							sicl			
6-11	Bt ₂	3.0	50.6	46.4	1.2	0.8	0.5	0.3	0.2							sic			
11-15	Bt ₃	3.9	55.3	40.8	1.5	1.3	0.6	0.3	0.2							sic/sicl			
15-29	C	13.9	56.5	29.6	4.9	4.4	2.9	1.2	0.5							с			
		рН			E	changeab	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe ₂ O ₃	CaCO ₃	Matter	к	No.1
in	Н,О	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
				-		м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt ₁	90		10											15	68	15			2
Bt ₂														20	10	62	8		
Bt ₃														15	10	66	9		
C										15				15	5	60	5		

Trappist, channery silty clay loam

Pedon #: S94KY-135-13-(1-4)
Classification: Fine, mixed, semiactive, mesic Typic Hapludults
Location: Lewis County, Kentucky
Parent Material:

Vegetation: Landscape Position: Drainage: Moisture when sampled: Sampling Date: Permeability: Slope: Described by: A—0 to 3 inches; dark brown (10YR 4/3) channery silty clay loam; weak fine granular structure; friable; few fine and medium roots; 30% shale fragments; extremely acid; clear wavy boundary.

Bt1—3 to 10 inches; yellowish brown (10YR 5/6) and brown (7.5YR 5/4) very channery clay; weak fine and medium subangular blocky structure; firm; common fine and few medium roots; 40% shale fragments; common faint clay films on ped faces; extremely acid; abrupt wavy boundary. Bt2—10 to 27 inches; dark brown (7.5YR 4/4) very channery clay; common fine faint yellowish brown (10YR 5/6) mottles; weak medium subangular blocky structure; firm; common fine and few medium roots; 50% shale fragments; common faint clay films on ped faces; extremely acid; clear wavy boundary.

C—27 to 36 inches; yellowish brown (10YR 5/6) and light brownish gray (10YR 6/2) clay; structureless; firm; few fine and medium roots; 50% shale fragments; extremely acid; abrupt wavy boundary.

Cr—36 inches; soft shale bedrock.

SOIL TYPE.			LEWIS COL	TRA JNTY, KENT	PPIST UCKY	PEDON # GENERA	L METHOD	S	S9	4KY-135-0 1A1 1A2 1)13-(1-4) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm							
								3/	A1								2/	12	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Coa	rse Fragme	ents
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-3	A	27.5	49.1	23.4	13.0	8.4	3.5	1.6	1.0							l/sil			1
3-10	Bt,	13.3	49.4	37.3	6.5	4.3	1.5	0.6	0.4							sicl			
10-27	Bt,	4.6	52.5	42.9	2.0	1.4	0.6	0.3	0.3		1					sic/sicl			
27-36	Ć	8.3	51.5	40.2	4.3	2.6	0.9	0.3	0.2		1					sic/sicl			
		Ha			E:	kchangeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z		1				ĺ				
	8C1a	8C1c	8D7	Ca	Ma	к	Na	TEB	CEC			H+AI	EA	sc			Organic		P Brav
Depth	(1:1)	(1:1)	SMP	mea/	mea/	mea/	mea/	mea/	mea/	5C1	5C3	mea/	mea/	mea/	Fe ₋ O ₋	CaCO	Matter	к	No.1
in	H.O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
											1					· · · · ·			
						Mi	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns						
Horizon				Sand	+ Silt									Clav					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F
Bt,					1	1				12	1	1	20	13	50	5			
Bt,										10	1	İ	23	12	50	5			

Minerals: SM = smectite; V = vermiculite; HIV = hydroxyinterlayered vermiculite; CL = chlorite; INT = interstratified; K = kaolinite; MI = mica; Q = quartz; GO = goethite; GI = gibbsite; F = feldspars; CA = calcite; RE = other resistant minerals

88

Trappist, silt loam (Taxadjunct)

Pedon #: S94KY-135-30-(1-5) Classification: Fine, illitic, semiactive, mesic Typic Hapludults Location: Lewis County, Kentucky Parent Material:

rarent materi

Vegetation:

Landscape Position:

Drainage: Moisture when sampled: Sampling Date: Permeability:

Slope:

Described by:

A—0 to 2 inches; dark brown (10YR 4/3) silt loam; weak fine granular structure; very friable; many fine and medium roots; 3% shale fragments; extremely acid; clear smooth boundary. B/A—2 to 5 inches; yellowish brown (10YR 5/4) silt loam; weak fine subangular blocky parting to weak fine granular structure; friable; many fine and common medium roots; 6% shale fragments; extremely acid; clear wavy boundary.

Bt1—5 to 10 inches; yellowish brown (10YR 5/6) channery silty clay loam; common fine and medium distinct yellowish brown (10YR 5/8) mottles; moderate fine and medium subangular blocky structure; firm; common fine and medium, few coarse roots; 20% shale fragments; common fine clay films on peds; extremely acid; clear wavy boundary. Bt2—10 to 22 inches; yellowish brown (10YR5/8) silty clay; common fine distinct strong brown (7.5YR 5/6) mottles; weak fine subangular blocky structure; firm; common fine and medium, few coarse roots; 50% shale fragments; common faint clay films on peds; extremely acid; clear wavy boundary.

C—22 to 35 inches; brown (7.5YR 5/4) clay; many fine prominent olive gray (5Y 5/2) mottles; few fine distinct strong brown (7.5YR 5/8) mottles; moderate thin and very thin platy structure; very firm; few fine and medium roots; 75 to 80% shale fragments; extremely acid; clear smooth boundary.

Cr-35 inches; soft shale bedrock.

SOIL TYPE. LOCATION			TRAPPIS LEWIS COU	T (TAXADJU JNTY, KENT	UNCT) UCKY	PEDON # GENERA	L METHOD	S	S9	94KY-135-0 1A1 1A2 1)30-(1-6) B1B 2A1								
									Particle Size	Class and	Particle Dia	meter (mm)							
								3.	A1								2	A2	3B1a
			Total				Sand			S	ilt			Sand	VFS Plus		Co	arse Fragme	ents
			Silt	Int. IV	Very				Very					Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-2	A	34.1	43.6	22.3	9.3	14.4	6.3	2.7	1.4		1					1			
2-5	BA	11.2	65.0	23.8	4.0	3.4	2.1	1.1	0.6		1			1		sil			
5-10	Bt,	7.5	60.1	32.4	2.2	2.3	1.6	0.9	0.5		1			1		sicl			
10-22	Bt _a	15.9	45.4	38.7	6.6	4.8	2.7	1.3	0.5		1			1		sicl/sic			
22-35	Ć	25.0	46.2	28.8	8.8	6.7	5.3	3.2	1.0		1					cl/l			
35″	Cr	16.5	51.1	32.4	5.2	5.5	3.7	1.6	0.5		1			1		sicl			
		pH			E:	kchangeabl	e Bases (5A	1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	656
Depth	8C1a (1:1)	8C1c (1:1)	8D7 SMP	6N2z Ca meq/	602z Mg meq/	602z K meq/	6P2z Na meq/	5B1a TEB meq/	5A1z CEC meq/	5C1	5C3	H+Al meq/	EA meq/	SC meq/	Fe ₂ O ₃	CaCO ₃	Organic Matter	к	P Bray No.1
in	H,0	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						M	 inoralogical	Analycic	Ectimated B	orcontago	c in Various	Sizo Eractio	n c						
Horizon				Sand	L Cil+	IVI	ineralogica	i Allalysis—	Estimated P	ercentage	s in various	SIZE FIACUO	115	Clay					
norizon		F		Sano	+ 311		05	C A			1107		INIT				CI	60	
	Q	F	MI	ĸ			KE		SM	<u>v</u>	HIV			K	MI	Q	G	GO	F
C.S.	75		25							4			15	10	61	10			<u> </u>

Vertrees, silt loam

Pedon #: \$96KY-227-09-(1-7)

Classification: Fine, mixed, active, mesic, Typic Paleudalfs

Location: Warren Co., KY; approximately 0.18 mile south of the intersection of William Natcher Parkway and 31-W south; 0.9 mile west on Bennett Road; 300 feet north of Bennett Road in outdoor classroom site. Longitude: 86° 28' 08"; Latitude: 36° 56' 04"

Parent Material: Residuum from limestone

Vegetation:

Landscape Position: Karst ridge

Drainage:

Moisture when sampled: Sampling Date: 9/16/96

Permeability:

Slope: 4%

Described by: Michael J. Mitchell

Ap-0 to 3 inches; brown (10YR 4/3) silt loam; moderate fine granular structure; friable; common very fine roots; slightly acid; abrupt smooth boundary.

BA—3 to 6 inches; dark reddish brown (5YR 3/3) silt loam; moderate medium granular structure; friable; common fine roots; very strongly acid; abrupt smooth boundary.

Bt1-6 to 12 inches; dark reddish brown (2.5YR 3/4) silty clay loam; moderate medium subangular blocky structure; friable; common fine and coarse roots; common faint films; strongly acid; gradual wavy boundary.

Bt2—12 to 18 inches; red (2.5YR 4/6) silty clay loam; few black concretionary stains on ped faces; moderate medium subangular blocky structure; firm; common fine roots; common distinct clay films on ped faces and in pores; strongly acid; gradual wavy boundary.

Bt3-18 to 35 inches; dark red (2.5YR 3/6) silty clay; few black stains on ped faces; moderate medium angular and subangular blocky structure; firm; few fine roots; many prominent clay films on ped faces and pores; <1% chert fragments; moderately acid; gradual wavy boundary.

Bt4-35 to 44 inches; dark reddish brown (2.5YR 3/4) silty clay; few black round concretions; strong medium to coarse angular blocky structure; very firm; few fine roots; many prominent clay films on ped faces; <1% weathered chert fragments; slightly acid; gradual wavy boundary.

Bt5-44 to 62 inches; dark red (10YR 3/6) silty clay; few black and brown round concretions; strong coarse to medium subangular blocky structure; very firm; few very fine roots; many prominent clay films; <1% weathered chert fragments; slightly acid.

SOIL TYPE.		W	ARREN COL	VER JNTY, KENT	TREES UCKY	PEDON # GENERA	# L METHOD:	5		S96K 1A1 1A2 1	Y-227-09 B1B 2A1									
									Particle Size	Class and	Particle Dia	meter (mm))							
								3	A1								2/	A2	3B1a	
			Total		1		Sand			Silt				Sand	VFS Plus	1	Coarse Fragme		ents	
			Silt	Int. IV	Very				Very		1	1		Coarser	Silt			2-19	19-76	
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of	
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm	
6-12	Bt,	7.0	60.8	32.2	0.1	0.4	0.7	3.0	2.8		1					sicl			1	
12-18	Bt	8.0	49.5	42.5	0.4	0.4	0.6	3.7	2.9		1					sic/sicl			1	
18-35	Bt	9.6	50.9	39.5	0.2	0.6	0.8	4.1	3.9		1					sic/sicl				
35-44	Bt	12.1	32.9	55.0	2.0	1.2	0.8	4.5	3.6		1					с				
44-62	Bt,	13.7	29.9	56.4	2.9	1.1	1.2	4.6	3.9							с				
		pH Exchangeable Bases (5A1)						1)		Base Sa	turation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6	
				6N2z	602z	602z	6P2z	5B1a	5A1z						1					
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray	
Depth	(1:1)	(1:1)	SMP	meg/	meg/	meg/	meg/	meg/	meg/	5C1	5C3	meg/	meg/	meg/	Fe ₂ O ₂	CaCO,	Matter	к	No.1	
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm	
							1				1		-					1		
						м	ineralogical	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns			•				
Horizon				Sand	+ Silt			-						Clay						
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F	
Bt,					İ	İ			10	34	1		6	35	15				1	
Bt ₂				İ	İ		Ì		14	30	1	İ	5	40	8	3	İ	İ	1	
Bt				1	1	1	Ì	İ	14	40	1	İ		40	6	Ì	İ		1	

Vertrees, silt loam

Pedon #: S97KY-227-19-(1-7)

Classification: Fine, mixed, semiactive, mesic Typic Paleudalfs

Location: Warren County, Kentucky, approximately 0.31 mile east of U.S. 31-W and Bennet Road; then 0.2 mile north of Bennett Road in pasture field. Longitude: 86° 28' 41"; Latitude: 36° 56' 16"

Parent Material: Loess/residuum

Vegetation:

Landscape Position: Broad ridges

Drainage:

Moisture when sampled:

Sampling Date: 6/2/97

Permeability:

Slope: 3%

Described by: Michael J. Mitchell

Ap1—0 to 4 inches; brown (10YR 4/3) silt loam; weak fine granular structure; friable; common fine roots; neutral; gradual wavy boundary.

Ap2—4 to 6 inches; yellowish brown (10YR 5/4) silt loam; weak medium granular structure; friable; common fine roots; neutral; abrupt wavy boundary.

Bt1—6 to 15 inches; red (2.5YR 4/6) silty clay loam; weak medium subangular blocky structure; firm; common fine roots; common distinct clay films; reddish brown (2.5YR 4/4) intrusion; black concretions throughout; neutral; gradual wavy boundary.

Bt2—15 to 27 inches; red (2.5YR 4/6) silty clay; moderate medium subangular blocky structure; firm; common fine roots; common prominent clay films; black concretions throughout horizon; weathered chert fragments <1%; slightly acid; gradual smooth boundary.

Bt3—27 to 44 inches; dark red (10R 3/6) silty clay/clay; moderate medium subangular blocky structure; firm; few fine roots; coarse prominent clay films; few yellowish brown (10YR5/6) iron accumulations; slightly acid; gradual smooth boundary.

Bt4—44 to 59 inches; dark red (10R3/6) silty clay; moderate medium subangular blocky structure; firm; few fine roots; common prominent clay films; few dark yellowish brown (10YR 4/6) yellowish brown accumulations; slightly acid; gradual smooth boundary.

Bt5—59 to 71 inches; dusky red (10R 3/4) silty clay; moderate medium subangular blocky structure; firm; few fine roots; common distinct clay films; few strong brown (7.5YR 5/6) accumulations; slightly acid.

SOIL TYPE VER1	REES	ł
LOCATION KENT	UCKY	(

ES PEDON # S97-KY-227-19-(1-7) KY GENERAL METHODS1A1 1A2 1B1B 2A1

									Particle Size	Class and	Particle Dia	meter (mm))							
		3A1															2/	3B1a		
		Total			Sand					S	ilt	·	1	Sand	VFS Plus	1	Coarse Fragmo		ents	
			Silt	Int. IV	Very				Very]		Coarser	Silt			2-19	19-76	
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of	
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm	
6-15	Bt,	14.6	53.8	31.6	0.7	0.6	1.1	7.8	4.4							sicl				
15-27	Bt,	16.6	42.0	41.4	2.1	1.1	1.2	7.4	4.8							sic/sicl				
27-44	Bt,	9.5	36.9	53.6	0.8	0.6	0.5	3.4	4.2							c/sic				
44-59	Bt	7.1	34.8	58.1	0.2	0.5	0.5	1.8	4.1							с				
		pН			Exchangeable Bases (5A1)					Base Saturation			6H1a	5A3a		6N7	6A1a	60sz	6S6	
				6N2z	602z	602z	6P2z	5B1a	5A1z											
	8C1a	8C1c	8D7	Ca	Mg	к	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray	
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	к	No.1	
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm	
	- 1																			
	•				·	м	ineralogica	Analysis—	Estimated P	ercentage	s in Various	Size Fractio	ns			•			•	
Horizon				Sand	+ Silt									Clay						
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F	
6	75		5	İ	1	10	1	İ	9	22	Î		21	28	20	1	1		1	

Wheeling, silt loam

Pedon #: S90KY-135-12-(1-9)

Classification: Fine-loamy, mixed, active, mesic, Ultic Hapludalfs

Location: Lewis County, Kentucky; Atlas sheet 6; about 2.5 miles east of intersection of CSX railroad tracks and Mason-Lewis County line, about 225 feet north of the CSX railroad tracks, about 50 feet north of a barn. x: 2,178,560 feet; Latitude: 38° 40' 09"; y: 425,450 feet; Longitude: 83° 37' 30"

Parent Material: Mixed alluvium of the Ohio River floodplain, Quaternary Geologic System

Vegetation: Tobacco, cropland

Landscape Position: Terrace

Drainage:

Moisture when sampled: Moist

Sampling Date: 6/26/90

Permeability:

Slope: 5%

Described by: S. Jacobs and D. Dotson

A—0 to 9 inches (0 to 23 cm); dark yellowish brown (10YR 3/4) loam; weak fine granular structure; very friable; few fine roots; moderately alkaline; clear smooth boundary.

Bt1—9 to 20 inches (51 to 69 cm); dark yellowish brown (10YR 4/6) loam; weak fine subangular blocky structure; friable; common faint clay films on ped surfaces, common faint clay bridges between peds; moderately alkaline; gradual smooth boundary.

Bt2—20 to 27 inches (51 to 69 cm); dark yellowish brown (10YR4/6) loam; weakfine and medium subangular blocky structure; friable; many faint clay films on ped surfaces; moderately alkaline; clear smooth boundary.

Bt3—27 to 32 inches (69 to 81 cm); dark brown (10YR 4/3) loam; weak medium subangular blocky structure; friable; many faint clay films on ped surfaces; moderately alkaline; clear smooth boundary.

2Bw1—32 to 44 inches (81 to 112 cm); dark yellowish brown (10YR3/4) sandy loam; weak fine granular structure, some single grain structure; very friable; few faint clay bridges between sand grains; moderately alkaline; clear smooth boundary. 3Bt4—44 to 56 inches (112 to 142 cm); yellowish brown (10YR 5/4) silty clay loam; common fine faint yellowish brown (10YR 5/8) mottles; weak medium subangular blockystructure; friable; fewfaint clay films on ped surfaces; moderately alkaline; clear smooth boundary.

4Bw2—56 to 58 inches (142 to 147 cm); dark yellowish brown (10YR 4/6) sandy loam; weak fine granular and single grain structure; very friable; few faint clay bridges between sand grains; moderately alkaline; clear smooth boundary.

5Bt5—58 to 64 inches (147 to 163 cm); dark yellowish brown (10YR 3/4) loamy sand; weak medium subangular blocky structure; friable; few faint clay films on ped surfaces and grains; moderately alkaline; clear smooth boundary.

SOIL TYPE	WHEELING	PEDON #	
LOCATIONLEWIS CO	UNTY, KENTUCKY	GENERAL METHODS	

									Particle Size	Class and	Particle Dia	meter (mm))						
								3	A1								2	42	3B1a
			Total		Sand				S	ilt			Sand	VFS Plus	1	Coa	arse Fragmo	ents	
			Silt	Int. IV	Very				Very		1]		Coarser	Silt			2-19	19-76
Depth		Sand	(0.05-	Clay	Coarse	Coarse	Medium	Fine	Fine	(0.05-	Int. III	Int. II	Int. I	Than VF	(0.1-	Textural		Pct of	Pct of
in	Horizon	(2-0.05)	0.002)	<0.002	(2-1)	(1-0.5)	(0.5-0.25)	(0.2501)	(0.1-0.05)	0.02)	(.02002)	(0.2-0.02)	(2-0.2)	(2-0.1)	0.002)	Class	>2 Pct	<76mm	<76mm
0-9	Ар	50.7	31.9	17.4	1.0	9.2	0	25.6	14.9							l/sl			
9-20	Bt ₁	45.1	30.0	24.9	0.2	0.5	6.1	24.3	14.0										
20-27	Bt,	61.1	17.6	21.3	0	0.5	10.7	33.2	16.7							scl			
27-32	Bt,	70.9	12.4	16.7	0.2	0.5	18.1	42.7	9.4							sl			
32-44	2Bw ₁	69.7	18.5	11.8	0.1	0.4	14.0	43.3	11.9							sl			
44-56	3Bt₄	61.1	24.5	14.4	0	0.3	5.7	32.0	23.1							sl			
56-58	4Bw ₂	83.5	11.3	5.2	0.2	0.6	23.0	47.3	12.4							ls			
58-64	5Bt ₅	71.1	12.6	16.3	0	0.3	11.6	43.5	15.7							sl			
64-69	6Bw ₃	80.4	8.5	11.1	0.1	0.7	22.0	47.0	10.6							sl/ls			
		рН			E	xchangeab	le Bases (5A	1)		Base Sa	aturation	6G1x	6H1a	5A3a		6N7	6A1a	60sz	6S6
				6N2z	602z	602z	6P2z	5B1a	5A1z										
	8C1a	8C1c	8D7	Ca	Mg	ĸ	Na	TEB	CEC			H+AI	EA	SC			Organic		P Bray
Depth	(1:1)	(1:1)	SMP	meq/	meq/	meq/	meq/	meq/	meq/	5C1	5C3	meq/	meq/	meq/	Fe,O,	CaCO,	Matter	ĸ	No.1
in	H,O	KCI	Buff.	100gm	100gm	100gm	100gm	100gm	100gm	Pct	Pct	100 gm	100gm	100gm	Pct	Eq. Pct	Pct	ppm	ppm
						M	lineralogica	l Analysis—	Estimated F	Percentage	s in Various	Size Fractio	ns						
Horizon				Sand	l + Silt									Clay					
	Q	F	MI	K	CL	INT	RE	CA	SM	V	HIV	CL	INT	K	MI	Q	GI	GO	F

Mention or display of a trademark, proprietary product, or firm in text or figures does not constitute an endorsement and does not imply approval to the exclusion of other suitable products or firms.

The College of Agriculture is an Equal Opportunity Organization Issued 1-2006